
Revision 99, Date 11/11/11 9:52 AM

	

	

	 THIS	 DOCUMENT	 REFLECTS	 VERSION	 0.19.0	 RELEASED	 ON	 SEPTEMBER	 16TH,	 2011

SIP	 SIMPLE	 client	 SDK	
Developer	 Guide	
http://sipsimpleclient.com	

ABSTRACT	

SIP	 SIMPLE	 client	 SDK	 is	 a	 Software	 Development	 Kit	 for	 easy	 development	 of	 SIP	 end-‐
points	 that	 support	 rich	 media	 like	 Audio,	 Instant	 Messaging,	 File	 Transfers,	 Desktop	
Sharing	 and	 Presence.	 Other	 media	 types	 can	 be	 easily	 added	 by	 using	 an	 extensible	
high-‐level	 API.	

 2

	

DESCRIPTION	 13	
Components	 13	
Background	 13	

FEATURES	 14	
General	 14	
Supported	 media	 types	 14	
Address	 Resolution	 14	

Implemented	 Standards	 15	
SIP	 Signaling	 15	
Address	 Resolution	 15	
NAT	 Traversal	 15	
Voice	 over	 IP	 15	
Instant	 Messaging	 15	
Desktop	 Sharing	 15	
Conferencing	 15	
Presence	 16	

INSTALLATION	 GUIDE	 17	
Prerequisites	 17	

Manual	 Installation	 18	
Tar	 Archives	 18	
Version	 Control	 Repository	 18	

Debian	 Packages	 19	
Debian	 Unstable	 (Sid)	 19	
Debian	 Stable	 (Squeeze)	 19	
Ubuntu	 Natty	 (11.04)	 19	
Ubuntu	 Lucid	 (10.04)	 19	
Ubuntu	 Maverick	 (10.10)	 19	
Install	 SIP	 SIMPLE	 client	 SDK	 19	
Install	 Command	 Line	 Tools	 20	

MacOSX	 10.6	 Snow	 Leopard	 21	
Prerequisites	 21	
Install	 Dependencies	 21	
Install	 SIP	 SIMPLE	 client	 SDK	 23	

MacOSX	 10.7	 Lion	 26	
Prerequisites	 26	
Install	 Dependencies	 26	
Install	 SIP	 SIMPLE	 client	 SDK	 28	

Windows	 Installer	 31	
Prerequisites	 31	
Install	 python	 dependencies	 32	
Install	 SIP	 SIMPLE	 client	 SDK	 33	

SIP	 SIMPLE	 CLIENT	 SDK 3

 3

TESTING	 GUIDE	 36	

SIP	 Account	 37	

sip-settings	 38	

sip-register	 39	
Description	 39	
Example	 39	

sip-audio-session	 41	
Description	 41	
Incoming	 Session	 42	
Outgoing	 Session	 43	
Alarm	 System	 44	

sip-session	 45	
Description	 45	
Example	 45	

sip-message	 48	
Description	 48	
Example	 for	 receiving	 a	 message	 49	
Example	 for	 sending	 a	 message	 49	

Presence	 50	

DEVELOPER	 GUIDE	 51	
Prerequisites	 51	
Middleware	 API	 51	
Low	 Level	 API	 51	

MIDDLEWARE	 API	 52	

SIPApplication	 53	
methods	 53	
attributes	 54	
notifications	 55	

Storage	 API	 57	
API	 Definition	 57	
Provided	 implementations	 57	

SIP	 Sessions	 58	

SessionManager	 59	
attributes	 59	
methods	 59	

Session	 60	
methods	 61	
attributes	 64	

 4

notifications	 66	

IMediaStream	 72	
methods	 72	
attributes	 74	
notifications	 75	

MediaStreamRegistry	 77	
methods	 77	

MediaStreamRegistrar	 78	

AudioStream	 79	
methods	 80	
attributes	 80	
notifications	 82	

MSRPStreamBase	 85	
methods	 85	
attributes	 85	
notifications	 86	

ChatStream	 87	
methods	 87	
notifications	 89	

FileSelector	 92	
methods	 92	
attributes	 93	

FileTransferStream	 94	
methods	 94	
notifications	 94	

IDesktopSharingHandler	 97	
methods	 97	
attributes	 97	
notifications	 97	

InternalVNCViewerHandler	 98	
methods	 98	
notifications	 98	

InternalVNCServerHandler	 99	
methods	 99	
notifications	 99	

ExternalVNCViewerHandler	 100	
methods	 100	
attributes	 100	

ExternalVNCServerHandler	 101	
methods	 101	

SIP	 SIMPLE	 CLIENT	 SDK 5

 5

DesktopSharingStream	 102	
methods	 102	
attributes	 102	

ConferenceHandler	 104	
methods	 104	
notifications	 104	

ADDRESS	 RESOLUTION	 107	

DNS	 Manager	 108	
methods	 108	
notifications	 108	

DNS	 Lookup	 109	
methods	 109	
notifications	 110	

Route	 112	
methods	 112	

SIP	 ACCOUNTS	 113	

AccountManager	 114	
methods	 114	
notifications	 115	

Account	 116	
states	 116	
attributes	 117	
notifications	 118	

BonjourAccount	 121	
states	 121	
attributes	 121	
notifications	 122	

AUDIO	 API	 127	

IAudioPort	 128	
attributes	 128	
notifications	 128	

AudioDevice	 130	
methods	 130	
attributes	 130	
AudioBridge	 130	
methods	 130	

WavePlayer	 132	
methods	 132	
attributes	 133	

 6

notifications	 133	

WaveRecorder	 134	
methods	 134	
attributes	 134	

Conference	 135	

AudioConference	 136	
methods	 136	
attributes	 136	

XCAP	 API	 138	

Contact	 139	
attributes	 139	
methods	 140	

Service	 141	
attributes	 141	
methods	 141	

Policy	 142	
attributes	 142	
methods	 142	

CatchAllCondition	 144	
attributes	 144	
methods	 144	

DomainCondition	 145	
attributes	 145	
methods	 145	

DomainException	 146	
attributes	 146	
methods	 146	

UserException	 147	
attributes	 147	
methods	 147	

PresencePolicy	 148	
attributes	 148	
methods	 149	

DialoginfoPolicy	 151	

Icon	 152	
attributes	 152	
methods	 152	

OfflineStatus	 153	
attributes	 153	

SIP	 SIMPLE	 CLIENT	 SDK 7

 7

methods	 153	

XCAPManager	 154	
configuration	 155	
methods	 156	
notifications	 158	

THREADING	 API	 162	

Thread	 Manager	 163	
methods	 163	
utility	 functions	 and	 decorators	 163	

The	 reactor	 thread	 and	 green	 threads	 164	
utility	 functions	 and	 decorators	 164	

CONFIGURATION	 API	 165	

Architecture	 166	

ConfigurationManager	 167	

SettingsObject	 169	
Defining	 a	 global	 SettingsObject	 169	
Defining	 a	 per-‐id	 SettingsObject	 169	
methods	 170	
Notifications	 170	

Setting	 172	

SettingsGroup	 173	

SettingsObjectExtension	 174	
Backend	 API	 174	

Middleware	 Settings	 177	
General	 177	
Account	 181	
BonjourAccount	 186	

SIPClients	 Settings	 188	
General	 188	
Account	 190	
BonjourAccount	 190	

SIP	 CORE	 API	 191	

PJSIP	 library	 192	

Architecture	 194	

Integration	 197	

 8

Components	 199	

Engine	 200	
attributes	 200	
methods	 200	
proxied	 attributes	 203	
proxied	 methods	 203	
notifications	 205	

SIPURI	 209	
methods	 209	

Credentials	 211	
methods	 211	

Invitation	 212	
attributes	 213	
methods	 216	
notifications	 218	

SDPSession	 220	
methods	 220	
attributes	 222	

SDPMediaStream	 223	
methods	 223	
attributes	 224	

SDPConnection	 225	
methods	 225	

SDPAttributeList	 226	

SDPAttribute	 227	
methods	 227	

RTPTransport	 228	
methods	 230	
attributes	 231	
notifications	 233	

AudioTransport	 235	
methods	 235	
attributes	 238	
notifications	 239	

Request	 240	
methods	 241	
attributes	 241	
notifications	 243	

IncomingRequest	 246	
attributes	 246	
methods	 246	

SIP	 SIMPLE	 CLIENT	 SDK 9

 9

notifications	 246	

Message	 248	
methods	 248	
attributes	 248	
notifications	 249	

Registration	 251	
methods	 251	
attributes	 251	
notifications	 252	

Publication	 255	
methods	 255	
attributes	 256	
notifications	 256	

Subscription	 259	
methods	 259	
attributes	 260	
notifications	 261	

IncomingSubscription	 264	
methods	 264	
attributes	 265	
notifications	 266	

Referral	 270	
methods	 270	
attributes	 271	
notifications	 272	

IncomingReferral	 276	
methods	 276	
attributes	 277	
notifications	 277	

AudioMixer	 281	
methods	 281	
attributes	 282	

MixerPort	 285	
methods	 285	
attributes	 285	

WaveFile	 286	
methods	 286	
attributes	 286	
notifications	 287	

RecordingWaveFile	 288	
methods	 288	
attributes	 288	

 10

ToneGenerator	 290	
methods	 290	
attributes	 290	
notifications	 291	

MSRP	 API	 292	

URI	 293	
methods	 293	

MSRPRelaySettings	 294	
methods	 294	

ConnectorDirect	 295	
methods	 295	

AcceptorDirect	 296	
methods	 296	

RelayConnection	 297	
methods	 297	

MSRPTransport	 299	
methods	 299	

MSRPData	 302	
attributes	 302	
methods	 302	

OutgoingFile	 305	
attributes	 305	
methods	 305	

MSRPSession	 306	
methods	 306	

MSRPServer	 308	
methods	 308	

Headers	 310	
ToPathHeader	 310	
FromPathHeader	 310	
MessageIDHeader	 310	
SuccessReportHeader	 310	
FailureReportHeader	 310	
ByteRangeHeader	 310	
StatusHeader	 311	
ExpiresHeader	 311	
MinExpiresHeader	 311	
MaxExpiresHeader	 311	
UsePathHeader	 311	
WWWAuthenticateHeader	 311	
AuthorizationHeader	 311	
AuthenticationInfoHeader	 312	

SIP	 SIMPLE	 CLIENT	 SDK 11

 11

ContentTypeHeader	 312	
ContentIDHeader	 312	
ContentDescriptionHeader	 312	
ContentDispositionHeader	 312	

Logging	 313	
methods	 313	

Examples	 316	
Creating	 an	 outbound	 connection	 316	
Waiting	 for	 an	 inbound	 connection	 316	

XCAP	 API	 318	

Components	 319	
GET	 319	
PUT	 319	
DELETE	 319	

Usage	 320	

PAYLOADS	 API	 321	

Common	 Policy	 322	
Example	 322	

Pres-rules	 323	
Example	 323	

Resource	 Lists	 325	
Generation	 325	
Parsing	 325	

RLS	 Services	 326	
Generation	 326	
Parsing	 326	

Presence	 Data	 Model	 328	
Example	 328	

Rich	 Presence	 Extension	 329	

Watcher-info	 330	
Example	 330	

XCAP-diff	 332	

Is-composing	 333	

Message	 Summary	 334	

User	 Agent	 Capability	 335	

 12

CIPID	 337	

Conference	 338	

Dialog	 Info	 339	

SAMPLE	 CODE	 340	

SIP	 SIMPLE	 CLIENT	 SDK 13

 13

Description

SIP SIMPLE client SDK is a Software Development Kit for easy development of SIP
end-points that support rich media like Audio, Instant Messaging, File Transfers,
Desktop Sharing and Presence.

Other media types can be easily added by using an extensible high-level API.

The project home page is http://sipsimpleclient.com

Components

Background

SIP stands for 'Session Initiation Protocol', an IETF standard described by RFC 3261.
SIP is an Internet application-layer control protocol that can establish, modify and
terminate multimedia sessions such as Internet telephony calls (VoIP). Media can be
added to (and removed from) an existing session.

SIP allows the endpoints to negotiate and combine any type of session they mutually
understand like Audio, Video, Instant Messaging (IM), File Transfer, Desktop Sharing
and provides a generic event notification system with real-time Publications and
Subscriptions about state changes that can be used for asynchronous services like
Presence, Message Waiting Indicator and Busy Line Appearance.

 14

Features
General

• Multiple SIP Accounts support
• Non-blocking, asynchronous, notifications based engine
• Configuration Framework
• TLS Security for SIP signaling (SIP)
• TLS Security for media (MSRP, XCAP)
• Multiple Media Types per Session (e.g. Audio + IM)
• Trace capability for all underlying protocols
• Supports re-INVITE for adding and removing media
• Automatically handling if IP Address changes
• VPN friendly
• Conference Audio Mixer
• Wav Player and Recorder
• Acoustic Echo Cancelation
• Answering Machine
• Wide-band Internet codecs: Speex and G722
• PSTN compatible codecs: G711, iLBC, GSM

The SIP and media stacks are based on PJSIP 1.0 version with relevant patches from
later versions applied.

Supported media types

• Audio (RTP/sRTP)
• Instant Messaging (MSRP)
• File Transfer (MSRP)
• Desktop Sharing (VNC over MSRP)

All media types can be combined together in the same SIP session.

Address Resolution

The library uses a separated from the core lookup mechanism for the next hop
routing. This important feature allows the library to be used for building SIP clients
that operate in combination with any SIP provider (by employing RFC 3263 DNS
lookups), in a server-less LAN operation (using Bonjour protocol) or integrated into a
network overlay developed by a third party (e.g. P2PSIP overlay).

SIP	 SIMPLE	 CLIENT	 SDK 15

 15

Implemented Standards
SIP Signaling

• SIP, Session Initiation Protocol RFC3261
• SDP, Session Description Protocol RFC4566
• An Offer/Answer Model with Session Description Protocol (SDP) RFC3264
• Reliability of Provisional Responses in Session Initiation Protocol RFC3262
• HTTP Authentication: Basic and Digest Access Authentication RFC2617
• The Reason Header Field for the Session Initiation Protocol RFC3326

Address Resolution

1. Locating SIP services: RFC3263
2. Bonjour multicast DNS: http://tools.ietf.org/html/draft-lee-sip-dns-sd-uri-03

NAT Traversal

• SIP Signaling: Symmetric Response Routing Symmetric media RFC3581
• STUN: Session Traversal Utilities for NAT RFC5389
• Audio and Video: ICE, Interactive Connectivity Establishment RFC5245
• Instant Messaging and File Transfers: MSRP Relay Extension RFC4976
• MSRP Alternative Connection Model (ACM) RFC6135

Voice over IP

• RTP, A Transport Protocol for Real-Time Applications RFC3550
• Real Time Control Protocol (RTCP) attribute in Session Description Protocol

(SDP) RFC3605
• The Secure Real-time Transport Protocol (SRTP) RFC3711
• Generation and parsing of RFC 2833/telephone-events payload in both RTP

and SDP RFC2833

Instant Messaging

• Common Presence and Instant Messaging (CPIM): RFC 3862
• Session Initiation Protocol (SIP) Extension for Instant Messaging RFC3428
• MSRP Protocol RFC4975
• Indication of Message Composition for Instant Messaging RFC3994
• Message Summary Event Package RFC3842
• File Transfer RFC5547

Desktop Sharing

• Variation of draft-garcia-mmusic-sdp-collaboration-00 using RFB over MSRP

Conferencing

• Conference Event Package RFC4575
• A Framework for Conferencing with the Session Initiation Protocol RFC4353
• SIP Call Control - Conferencing for User Agents RFC4579

 16

o 5.1 INVITE: Joining a Conference Using the Conference URI - Dial-In
o 5.2 INVITE: Adding a Participant by the Focus - Dial-Out
o 5.5 REFER: Requesting a Focus to Add a New Resource to a

Conference
o 5.11 REFER with BYE: Requesting a Focus to Remove a Participant

from a Conference
• MSRP ad-hoc multi-party chat sessions draft-ietf-simple-chat-08

Presence

• SIP Specific Event Notification (SUBSCRIBE and NOTIFY methods) RFC3265
• SIP Extension for Event State Publication (PUBLISH method) RFC3903
• Presence Data Model (PIDF) RFC3863, RFC3379, RFC4479
• Watcher-info Event Package RFC3857, RFC3858
• Rich Presence Extensions to PIDF RFC4480
• Contact Information Extension to PIDF RFC4482
• User Agent Capability Extension to PIDF RFC5196
• XCAP Protocol RFC4825
• Common Policy RFC4745
• Presence Rules RFC5025
• Resource Lists RFC4826
• RLS Services RFC4826
• PIDF manipulation RFC4827
• XCAP Diff RFC5874
• OMA Reference Release Definition for XDM v1.1 and Presence SIMPLE v1.1

 Implementation Guidelines
• OMA XML Document Management V1.1

SIP	 SIMPLE	 CLIENT	 SDK 17

 17

Installation Guide

For an up to date installation guide visit http://sipsimpleclient.com

Prerequisites

A physical sound card is required.

The following computing platforms have been tested and are fully supported:

• Linux (i386 and amd64 architectures)
• MacOSX (Intel 32 bit architecture)
• Microsoft Windows (XP, Vista and 7)

The software can be theoretically ported to any operating systems supported by the
cross-platform PortAudio audio library.

 18

Manual Installation
Tar Archives

The software is available as a tar archive at:

http://download.ag-projects.com/SipClient/

Version Control Repository

The source code is managed using darcs version control tool. The darcs repository
can be fetched with:

SIP SIMPLE client SDK

darcs get http://devel.ag-projects.com/repositories/python-sipsimple

Command Line Tools

darcs get http://devel.ag-projects.com/repositories/sipclients

To obtain the incremental changes after the initial get, go to the python-sipsimple
and sipclients directory and run:

darcs pull –a

Up to date installation instructions are available in the folowing directory:

python-sipsimple/docs/

Install the software dependencies according to the instructions.

Then go into the directory where you have unpacked the software and run:

cd python-sipsimple
sudo python setup.py install

The software will be installed in the default Python site-packages directory on your
system.

SIP	 SIMPLE	 CLIENT	 SDK 19

 19

Debian Packages
Install the AG Projects debian software signing key:

wget http://download.ag-projects.com/agp-debian-gpg.key
sudo apt-key add agp-debian-gpg.key

Add these lines to /etc/apt/sources.list:

Debian Unstable (Sid)

deb http://ag-projects.com/debian unstable main
deb-src http://ag-projects.com/debian unstable main

Debian Stable (Squeeze)

deb http://ag-projects.com/debian stable main
deb-src http://ag-projects.com/debian stable main

Ubuntu Natty (11.04)

deb http://ag-projects.com/ubuntu natty main
deb-src http://ag-projects.com/ubuntu natty main

Ubuntu Lucid (10.04)

deb http://ag-projects.com/ubuntu lucid main
deb-src http://ag-projects.com/ubuntu lucid main

Ubuntu Maverick (10.10)

deb http://ag-projects.com/ubuntu maverick main
deb-src http://ag-projects.com/ubuntu maverick main

Update the list of available packages:

sudo apt-get update

Install SIP SIMPLE client SDK

sudo apt-get install python-sipsimple

 20

Install Command Line Tools

sudo apt-get install sipclients

SIP	 SIMPLE	 CLIENT	 SDK 21

 21

MacOSX 10.6 Snow Leopard
The installation procedure consists of the steps described below:

• Step 1. Prerequisites
• Step 2. Install Dependencies
• Step 3. Install SIP SIMPLE Client SDK

Prerequisites

• MacOSX 10.6 (Snow Leopard)
• Intel 32bit architecture
• Apple Developer tools (XCode 4.2)
• darcs version control tool from http://www.darcs.net

The procedure below relies on the standard available Python interpreter that comes
with MacOSX Snow Leopard (version 2.6) and Xcode version 4.2. Make sure that
during the building process you are not involving external tools or libraries like the
ones provided by Fink or Darwin Ports distributions.

Install Dependencies

python-gnutls http://pypi.python.org/simple/python-gnutls >=1.2.2
python-application http://pypi.python.org/simple/python-application >=1.2.8
Python-backports http://download.ag-projects.com/SipClient >=1.0.0
python-lxml http://codespeak.net/lxml >=2.1.2
python-eventlet http://download.ag-projects.com/SipClient =0.8.11.5
python-greenlet http://download.ag-projects.com/SipClient =0.4.0
python-cjson http://pypi.python.org/pypi/python-cjson/ >=1.0.5
cython http://www.cython.org =0.14.1
dnspython http://www.dnspython.org >=1.6.0
twisted http://twistedmatrix.com/trac >=8.1.0
zope-interface http://www.zope.org >=3.3.1
python-imaging http://pypi.python.org/pypi/PIL/ >=1.1.6
python-dateutil http://niemeyer.net/python-dateutil >=1.4

Build and install C dependencies, the software will be installed
under /usr/local folder:

Install GNUTLS dependencies
curl -O ftp://ftp.gnupg.org/gcrypt/libgpg-error/libgpg-error-
1.10.tar.bz2
tar -xjvf libgpg-error-1.10.tar.bz2
cd libgpg-error-1.10
make clean
CFLAGS="-arch i386" ./configure --prefix=/usr/local --disable-static --
disable-dependency-tracking
make
sudo make install
cd ..

 22

curl -O http://ftp.gnu.org/pub/gnu/libtasn1/libtasn1-2.10.tar.gz
tar zxvf libtasn1-2.10.tar.gz
cd libtasn1-2.10
make clean
CFLAGS="-arch i386" ./configure --disable-dependency-tracking
make
sudo make install
cd ..

curl -O ftp://ftp.gnupg.org/gcrypt/libgcrypt/libgcrypt-1.5.0.tar.bz2
tar -xjvf libgcrypt-1.5.0.tar.bz2
cd libgcrypt-1.5.0
make clean
CFLAGS="-arch i386" ./configure --prefix=/usr/local --with-gpg-error-
prefix=/usr/local --disable-static --disable-dependency-tracking --
disable-asm
make
sudo make install
cd ..

Install GNUTLS
curl -O http://ftp.gnu.org/pub/gnu/gnutls/gnutls-2.12.14.tar.bz2
tar -xjvf gnutls-2.12.14.tar.bz2
cd gnutls-2.12.14
make clean
CFLAGS="-arch i386" CXXFLAGS="-arch i386" ./configure --
prefix=/usr/local --with-libgcrypt-prefix=/usr/local --disable-static -
-disable-dependency-tracking --without-p11-kit --with-libgcrypt
make
sudo make install
cd ..

Build and install the Python dependencies by using the easy_install tool. The
software will be installed in /Library/Python/2.6/site-packages folder.

You must become root first. The export the following environment variables before
starting the build process:

sudo -s
export CC="gcc -isysroot /Developer/SDKs/MacOSX10.6.sdk"
export ARCHFLAGS="-arch i386"
export LDSHARED="gcc -Wl,-F. -bundle -undefined dynamic_lookup -
isysroot /Developer/SDKs/MacOSX10.6.sdk"

easy_install -U python-gnutls dnspython twisted python-application PIL
cython==0.14 python-dateutil pyOpenSSL

Install lxml python module
STATIC_DEPS=true CFLAGS="-arch i386" easy_install lxml

Stop being root
exit

SIP	 SIMPLE	 CLIENT	 SDK 23

 23

Install SIP SIMPLE client SDK

The SDK consists of four parts:

• Eventlet and Greenlet
• XCAP library
• MSRP library
• SIP SIMPLE library

Eventlet
if [-d python-eventlet]; then
 cd python-eventlet
 darcs pull -a
 sudo python setup.py install
else
 darcs get http://devel.ag-projects.com/repositories/python-
eventlet
 cd python-eventlet
 sudo python setup.py install
fi
cd ..

Greenlet
if [-d python-greenlet]; then
 cd python-greenlet
 darcs pull -a
else
 darcs get http://devel.ag-projects.com/repositories/python-
greenlet
 cd python-greenlet
fi
sudo -s
export CC="gcc -isysroot /Developer/SDKs/MacOSX10.6.sdk"
export ARCHFLAGS="-arch i386"
export LDSHARED="gcc -Wl,-F. -bundle -undefined dynamic_lookup -
isysroot /Developer/SDKs/MacOSX10.6.sdk"
python setup.py build
python setup.py install
exit
cd ..

Backports
if [-d python-backports]; then
 cd python-backports
 darcs pull -a
 sudo python setup.py install
else
 darcs get http://devel.ag-projects.com/repositories/python-
backports
 cd python-backports
 sudo python setup.py install
fi
cd ..

XCAP library
if [-d python-xcaplib]; then

 24

 cd python-xcaplib
 darcs pull -a
 sudo python setup.py install
else
 darcs get http://devel.ag-projects.com/repositories/python-
xcaplib
 cd python-xcaplib
 sudo python setup.py install
fi
cd ..

MSRP library
if [-d python-msrplib]; then
 cd python-msrplib
 darcs pull -a
 sudo python setup.py install
else
 darcs get http://devel.ag-projects.com/repositories/python-
msrplib
 cd python-msrplib
 sudo python setup.py install
fi
cd ..

Note: 64 bit architecture is not yet fully supported, namely there is hissing sound in
the audio input layer that manifests itself only when building in 64 bit mode. Until a
fix is found, the workaround is to use the 32 bit mode.

Build and install SIP SIMPLE library:

sudo -s
build only for 32 bit architechture to avoid the audio input bug
export SIPSIMPLE_OSX_ARCH="i386"
python setup.py build_ext --pjsip-clean-compile
python setup.py install

Additional, you can install the command line interface scripts that can
be
used to test the SDK capabilities.

if [-d sipclients]; then
 cd sipclients
 darcs pull -a
else
 darcs get http://devel.ag-projects.com/repositories/sipclients
 cd sipclients
fi
sudo python setup.py install
cd ..

Additional, you can install the command line interface scripts that can be used to test
the SDK.

if [-d sipclients]; then

SIP	 SIMPLE	 CLIENT	 SDK 25

 25

 cd sipclients
 darcs pull -a
else
 darcs get http://devel.ag-projects.com/repositories/sipclients
fi
cd..

sudo python setup.py install

To use the sipclients command line tools, you must force the system
Python interpreter to use the 32 bit mode as by default the Python
interpreter uses the 64 mode while the SIP SIMPLE core is built for
32 bits:

export VERSIONER_PYTHON_PREFER_32_BIT=yes

 26

MacOSX 10.7 Lion
The installation procedure consists of the steps described below:

• Step 1. Prerequisites
• Step 2. Install Dependencies
• Step 3. Install SIP SIMPLE Client SDK

Prerequisites

• MacOSX 10.7 (Lion)
• Intel 32bit architecture
• Apple Developer tools (XCode 4.2)
• darcs version control tool from http://www.darcs.net

The procedure below relies on Python interpreter that comes with MacOSX Lion
(version 2.6) and Xcode version 4.2. Make sure that during the building process you
are not involving external tools or libraries like the ones provided by Fink or Darwin
Ports distributions.

Install Dependencies

python-gnutls http://pypi.python.org/simple/python-gnutls >=1.2.2
python-application http://pypi.python.org/simple/python-application >=1.2.8
Python-backports http://download.ag-projects.com/SipClient >=1.0.0
python-lxml http://codespeak.net/lxml >=2.1.2
python-eventlet http://download.ag-projects.com/SipClient =0.8.11.5
python-greenlet http://download.ag-projects.com/SipClient =0.4.0
python-cjson http://pypi.python.org/pypi/python-cjson/ >=1.0.5
cython http://www.cython.org =0.14.1
dnspython http://www.dnspython.org >=1.6.0
twisted http://twistedmatrix.com/trac >=8.1.0
zope-interface http://www.zope.org >=3.3.1
python-imaging http://pypi.python.org/pypi/PIL/ >=1.1.6
python-dateutil http://niemeyer.net/python-dateutil >=1.4

Build and install C dependencies, the software will be installed
under /usr/local folder:

Install GNUTLS dependencies
curl -O ftp://ftp.gnupg.org/gcrypt/libgpg-error/libgpg-error-
1.10.tar.bz2
tar -xjvf libgpg-error-1.10.tar.bz2
cd libgpg-error-1.10
make clean
CFLAGS="-arch i386" ./configure --prefix=/usr/local --disable-static --
disable-dependency-tracking
make
sudo make install
cd ..

SIP	 SIMPLE	 CLIENT	 SDK 27

 27

curl -O http://ftp.gnu.org/pub/gnu/libtasn1/libtasn1-2.10.tar.gz
tar zxvf libtasn1-2.10.tar.gz
cd libtasn1-2.10
make clean
CFLAGS="-arch i386" ./configure --disable-dependency-tracking
make
sudo make install
cd ..

curl -O ftp://ftp.gnupg.org/gcrypt/libgcrypt/libgcrypt-1.5.0.tar.bz2
tar -xjvf libgcrypt-1.5.0.tar.bz2
cd libgcrypt-1.5.0
make clean
CFLAGS="-arch i386" ./configure --prefix=/usr/local --with-gpg-error-
prefix=/usr/local --disable-static --disable-dependency-tracking --
disable-asm
make
sudo make install
cd ..

Install GNUTLS
curl -O http://ftp.gnu.org/pub/gnu/gnutls/gnutls-2.12.14.tar.bz2
tar -xjvf gnutls-2.12.14.tar.bz2
cd gnutls-2.12.14
make clean
CFLAGS="-arch i386" CXXFLAGS="-arch i386" ./configure --
prefix=/usr/local --with-libgcrypt-prefix=/usr/local --disable-static -
-disable-dependency-tracking --without-p11-kit --with-libgcrypt
make
sudo make install
cd ..

Build and install the Python dependencies by using the easy_install tool. The
software will be installed in /Library/Python/2.6/site-packages folder.

You must become root first. The export the following environment variables before
starting the build process:

sudo -s
export CC="gcc -isysroot /Developer/SDKs/MacOSX10.6.sdk"
export ARCHFLAGS="-arch i386"
export LDSHARED="gcc -Wl,-F. -bundle -undefined dynamic_lookup -
isysroot /Developer/SDKs/MacOSX10.6.sdk"

easy_install -U python-gnutls dnspython twisted python-application PIL
cython==0.14 python-dateutil pyOpenSSL

Install lxml python module
STATIC_DEPS=true CFLAGS="-arch i386" easy_install lxml

Stop being root
exit

 28

Install SIP SIMPLE client SDK

The SDK consists of four parts:

• Eventlet and Greenlet
• XCAP library
• MSRP library
• SIP SIMPLE library

Eventlet
if [-d python-eventlet]; then
 cd python-eventlet
 darcs pull -a
 sudo python setup.py install
else
 darcs get http://devel.ag-projects.com/repositories/python-
eventlet
 cd python-eventlet
 sudo python setup.py install
fi
cd ..

Greenlet
if [-d python-greenlet]; then
 cd python-greenlet
 darcs pull -a
else
 darcs get http://devel.ag-projects.com/repositories/python-
greenlet
 cd python-greenlet
fi
sudo -s
export CC="gcc -isysroot /Developer/SDKs/MacOSX10.6.sdk"
export ARCHFLAGS="-arch i386"
export LDSHARED="gcc -Wl,-F. -bundle -undefined dynamic_lookup -
isysroot /Developer/SDKs/MacOSX10.6.sdk"
python setup.py build
python setup.py install
exit
cd ..

Backports
if [-d python-backports]; then
 cd python-backports
 darcs pull -a
 sudo python setup.py install
else
 darcs get http://devel.ag-projects.com/repositories/python-
backports
 cd python-backports
 sudo python setup.py install
fi
cd ..

XCAP library
if [-d python-xcaplib]; then
 cd python-xcaplib

SIP	 SIMPLE	 CLIENT	 SDK 29

 29

 darcs pull -a
 sudo python setup.py install
else
 darcs get http://devel.ag-projects.com/repositories/python-
xcaplib
 cd python-xcaplib
 sudo python setup.py install
fi
cd ..

MSRP library
if [-d python-msrplib]; then
 cd python-msrplib
 darcs pull -a
 sudo python setup.py install
else
 darcs get http://devel.ag-projects.com/repositories/python-
msrplib
 cd python-msrplib
 sudo python setup.py install
fi
cd ..

Note: 64 bit architecture is not yet fully supported, namely there is hissing sound in
the audio input layer that manifests itself only when building in 64 bit mode. Until a
fix is found, the workaround is to use the 32 bit mode.

Build and install SIP SIMPLE library:

sudo -s
build only for 32 bit architechture to avoid the audio input bug
export SIPSIMPLE_OSX_ARCH="i386"
python setup.py build_ext --pjsip-clean-compile
python setup.py install

Additional, you can install the command line interface scripts that can
be
used to test the SDK capabilities.

if [-d sipclients]; then
 cd sipclients
 darcs pull -a
else
 darcs get http://devel.ag-projects.com/repositories/sipclients
 cd sipclients
fi
sudo python setup.py install
cd ..

Additional, you can install the command line interface scripts that can be used to test
the SDK.

if [-d sipclients]; then

 30

 cd sipclients
 darcs pull -a
else
 darcs get http://devel.ag-projects.com/repositories/sipclients
fi
cd..

sudo python setup.py install

To use the sipclients command line tools, you must force the system
Python interpreter to use the 32 bit mode as by default the Python
interpreter uses the 64 mode while the SIP SIMPLE core is built for
32 bits:

export VERSIONER_PYTHON_PREFER_32_

SIP	 SIMPLE	 CLIENT	 SDK 31

 31

Windows Installer
Prerequisites

The building process is designed to work with MinGW compiler. A proper

MSYS/MinGW setup is necessary along with Python (>= 2.5). The development

version of the following packages are also needed:

• openssl
• gnutls >=2.4.1
• python-setuptools =>0.6c9
• subversion and darcs version control tools

Required MSYS and MinGW packages:

MSYS (http://sourceforge.net/projects/mingw/files/MSYS/)

• MsysCORE (bin)
• libregex (dll)
• libtermcap (dll)
• coreutils (bin)
• libintl (dll)
• libiconv (dll)
• bash (bin)
• wget (bin)
• make (bin)
• sed (bin)
• grep (bin)
• gawk (bin)
• findutils (bin)
• patch (bin)
• tar (bin)
• bzip2 (bin)
• gzip (bin)
• diffutils (bin)

MinGW (http://sourceforge.net/projects/mingw/files/MinGW/)

• gcc-core (bin)
• libgcc (dll)
• gcc-c++ (bin)
• binutils (bin)
• less (bin)
• gmp (dev)
• libgmp (dll)
• pthreads (dev)
• libpthread (dll)
• mpc (dev)
• libmpc (dll)
• mpfr (dev)
• libmpfr (dll)
• mingwrt (dev)
• libz (dll)

 32

• gdb (bin)
• libexpat (dll)
• win32api (dev)

To install the above dependencies in an easy way, download AG Projects installer
from:

http://download.ag-projects.com/SipClient/Windows/SipSimpleIDE.exe

The installer includes the following components:

• MSYS environment
• MinGW compiler
• Darcs and subversion version control tools
• Python (2.6.5)
• python-srtuptools (0.6c11)
• GNUTLS (2.8.6)
• OpenSSL (1.0.0a)
• Apple Bonjour SDK
• Miscrosoft VC 2008 Redistributable

When using the installer select the default options proposed by the installer.

After the above dependencies have been installed, the distutils Python package
needs to be configured to use MinGW as the compiler. Create the file

C:\Python26\Lib\distutils\distutils.cfg with the following content:

-- BEGIN distutils.cfg --
[build]
compiler=mingw32
[build_ext]
compiler=mingw32
-- END distutils.cfg --

Install python dependencies

The following python packages need to be installed. Notice the minimum version
numbers:

python-gnutls http://pypi.python.org/simple/python-gnutls dev
python-application http://pypi.python.org/simple/python-application dev
python-lxml http://codespeak.net/lxml ==2.2.4
python-eventlet http://download.ag-projects.com/SipClient =0.8.11.4
python-greenlet http://download.ag-projects.com/SipClient =0.4.0
python-cjson http://pypi.python.org/pypi/python-cjson/ >=1.0.5
cython http://www.cython.org =0.12.1
dnspython http://www.dnspython.org >=1.6.0
twisted http://twistedmatrix.com/trac >=8.1.0
zope-interface http://www.zope.org >=3.3.1

SIP	 SIMPLE	 CLIENT	 SDK 33

 33

You must use the easy_install script provided by the python-setuptools package to
install the packages:

easy_install -U cython==0.14.1 dnspython twisted lxml==2.2.4

Some packages need to be installed manually:

python-application
if [-d python-application]; then
 cd python-application
 darcs pull -a
else
 darcs get http://devel.ag-projects.com/repositories/python-
application
 cd python-application
fi
python setup.py install
cd ..

python-cjson
if [-d python-cjson]; then
 cd python-cjson
 darcs pull -a
else
 darcs get http://devel.ag-projects.com/repositories/python-
cjson
 cd python-cjson
fi
python setup.py build
python setup.py install
cd ..

python-gnutls
if [-d python-gnutls]; then
 cd python-gnutls
 darcs pull -a
else
 darcs get http://devel.ag-projects.com/repositories/python-
gnutls
 cd python-gnutls
fi
python setup.py build
python setup.py install
cd ..

Install SIP SIMPLE client SDK

The SDK consists of four parts:

1. Eventlet and Greenlet
2. XCAP library
3. MSRP library
4. SIP SIMPLE library

 34

Greenlet
if [-d python-greenlet]; then
 cd python-greenlet
 darcs pull -a
else
 darcs get http://devel.ag-projects.com/repositories/python-
greenlet
 cd python-greenlet
fi
python setup.py install
cd ..

Eventlet
if [-d python-eventlet]; then
 cd python-eventlet
 darcs pull -a
else
 darcs get http://devel.ag-projects.com/repositories/python-
eventlet
 cd python-eventlet
fi
python setup.py install
cd ..

XCAP library
if [-d python-xcaplib]; then
 cd python-xcaplib
 darcs pull -a
else
 darcs get http://devel.ag-projects.com/repositories/python-
xcaplib
 cd python-xcaplib
fi
python setup.py install
cd ..

MSRP library
if [-d python-msrplib]; then
 cd python-msrplib
 darcs pull -a
else
 darcs get http://devel.ag-projects.com/repositories/python-
msrplib
 cd python-msrplib
fi
python setup.py install
cd ..

SIP SIMPLE
if [-d python-sipsimple]; then
 cd python-sipsimple
 darcs pull -a
else
 darcs get http://devel.ag-projects.com/repositories/python-
sipsimple
 cd python-sipsimple
fi
python setup.py build_ext --pjsip-clean-compile

SIP	 SIMPLE	 CLIENT	 SDK 35

 35

python setup.py install
cd ..

The software has been installed in C:\Python26\Lib\site-packages

 36

Testing Guide
To test SIP SIMPLE client SDK features, you can use the Command Line Tools
provided by the sipclients package.

SIP	 SIMPLE	 CLIENT	 SDK 37

 37

SIP Account
By default the Bonjour account is enabled and set as default. To use the Command
Line Tools on the public Internet, you must setup at least a SIP account.

You can register a SIP account for free at http://sip2sip.info.

sip-settings -a add user@domain pasword
sip-settings -a default user@domain

 38

sip-settings

Implemented in sipclients/sip-settings

Manages global and SIP account settings used by middleware and Command Line
Tools.

adigeo@ag-imac3:~$sip-settings
Usage: sip-settings [--general|--account] [options] command [arguments]
 sip-settings --general show
 sip-settings --general set key1=value1 [key2=value2 ...]
 sip-settings --account list
 sip-settings --account add user@domain password
 sip-settings --account delete user@domain|ALL
 sip-settings --account show [user@domain|ALL]
 sip-settings --account set [user@domain|ALL] key1=value1|DEFAULT
 sip-settings --account default user@domain

This script is used to manage the SIP SIMPLE middleware settings.

Options:
 -h, --help show this help message and exit
 -c FILE, --config-file=FILE
 The path to a configuration file to use. This
 overrides the default location of the
configuration
 file.
 -a, --account Manage SIP accounts' settings
 -g, --general Manage general SIP SIMPLE middleware settings
To use the command line tools you must create at least one SIP account:
sip-settings --account add user@domain password

SIP	 SIMPLE	 CLIENT	 SDK 39

 39

sip-register

Implemented in sipclients/sip-register

You can use this script to Register a SIP end-point with a SIP Registrar or broadcast
the local SIP URI using Bonjour mDNS.

Description

SIP protocol offers a discovery capability. If a user wants to initiate a session with
another user, he must discover the current host(s) at which the destination user is
reachable. To do this, SIP network elements consult an abstract service known as a
location service, which provides address bindings for a particular domain.
Registration entails sending a REGISTER request to a special type of UAS known as a
registrar. A registrar acts as the front end to the location service for a domain,
reading and writing mappings based on the contents of REGISTER requests. This
location service is then typically consulted by a proxy server that is responsible for
routing requests for that domain.

This script implements REGISTER method, which registers the contact (ip, port and
transport) for a given address of record (SIP address).

adigeo@ag-imac3:~$sip-register -h
Usage: sip-register [options]

This script will register a SIP account to a SIP registrar and refresh
it
while the program is running. When Ctrl+D is pressed it will
unregister.

Options:
 -h, --help show this help message and exit
 -a ACCOUNT_NAME, --account-name=ACCOUNT_NAME
 The account name from which to read account
settings.
 Corresponds to section Account_NAME in the
 configuration file.
 -s, --trace-sip Dump the raw contents of incoming and outgoing
SIP
 messages (disabled by default).
 -j, --trace-pjsip Print PJSIP logging output (disabled by
default).
 -r MAX_REGISTERS, --max-registers=MAX_REGISTERS
 Max number of REGISTERs sent (default 1, set to
0 for
 infinite).

Example

adigeo@ag-imac3:~$sip-register
Using account 31208005169@ag-projects.com
Registration succeeded at 85.17.186.7:5060;transport=udp.

 40

Contact: sip:xqdwrctb@192.168.1.6:58481 (expires in 600 seconds).
Other registered contacts:
 sip:31208005169@192.168.1.123:5060 (expires in 262 seconds)
 sip:31208005169@192.168.1.122:5062;line=634g6j67 (expires in 360
seconds)
 sip:31208005169@192.168.1.1;uniq=5B2860C44383A3D6705629A7E1FB8
(expires in 734 seconds)
Registration ended: 200 OK.

SIP	 SIMPLE	 CLIENT	 SDK 41

 41

sip-audio-session

Implemented in sipclients/sip-audio-session

Setup a single SIP audio session using RTP/sRTP media.

Description

This script can be used for interactive audio session or for scripting alarms. The
script returns appropriate shell response codes for failed or successful sessions. The
script can be setup to auto answer and auto hangup after predefined number of
seconds, detects SIP negative response codes, missing ACK and the lack of RTP
media after a session has been established. Once the media stream is connected, the
outcome of the ICE negotiation and the selected RTP candidates are displayed.

adigeo@ag-blink:~$sip-audio-session -h
Usage: sip-audio-session [options] [user@domain]

This script can sit idle waiting for an incoming audio session, or
initiate an
outgoing audio session to a SIP address. The program will close the
session
and quit when Ctrl+D is pressed.

Options:
 -h, --help show this help message and exit
 -a NAME, --account=NAME
 The account name to use for any outgoing
traffic. If
 not supplied, the default account will be used.
 -c FILE, --config-file=FILE
 The path to a configuration file to use. This
 overrides the default location of the
configuration
 file.
 -s, --trace-sip Dump the raw contents of incoming and outgoing
SIP
 messages.
 -j, --trace-pjsip Print PJSIP logging output.
 -n, --trace-notifications
 Print all notifications (disabled by default).
 -S, --disable-sound Disables initializing the sound card.
 --auto-answer Interval after which to answer an incoming
session
 (disabled by default). If the option is
specified but
 the interval is not, it defaults to 0 (accept
the
 session as soon as it starts ringing).
 --auto-hangup Interval after which to hang up an established
session
 (disabled by default). If the option is
specified but

 42

 the interval is not, it defaults to 0 (hangup
the
 session as soon as it connects).
 -b, --batch Run the program in batch mode: reading input
from the
 console is disabled and the option --auto-
answer is
 implied. This is particularly useful when
running this
 script in a non-interactive environment.
 -D, --daemonize Enable running this program as a deamon. This
option
 implies --disable-sound, --auto-answer and --
batch.

Incoming Session

adigeo@ag-blink:~$sip-audio-session
Using account 31208005169@ag-projects.com
Logging SIP trace to file "/Users/adigeo/Library/Application
Support/Blink/logs/sip_trace.txt"
Logging PJSIP trace to file "/Users/adigeo/Library/Application
Support/Blink/logs/pjsip_trace.txt"
Available audio input devices: None, system_default, Built-in Input,
Built-in Microphone
Available audio output devices: None, system_default, Built-in Output
Using audio input device: Built-in Microphone
Using audio output device: Built-in Output
Using audio alert device: Built-in Output

Available control keys:
 s: toggle SIP trace on the console
 j: toggle PJSIP trace on the console
 n: toggle notifications trace on the console
 p: toggle printing RTP statistics on the console
 h: hang-up the active session
 r: toggle audio recording
 m: mute the microphone
 i: change audio input device
 o: change audio output device
 a: change audio alert device
 <>: adjust echo cancellation
 SPACE: hold/unhold
 Ctrl-d: quit the program
 ?: display this help message

2009-08-25 16:37:12 Registered contact
"sip:hxsyungk@192.168.1.124:59164" for sip:31208005169@ag-projects.com
at 81.23.228.150:5060;transport=udp (expires in 600 seconds).
Other registered contacts:
 sip:31208005169@192.168.1.123:5060 (expires in 274 seconds)
 sip:kwbfxyvl@192.168.1.124:59116 (expires in 522 seconds)
 sip:ilmegvkp@192.168.1.124:59003 (expires in 339 seconds)
 sip:31208005169@192.168.1.1;uniq=5B2860C44383A3D6705629A7E1FB8
(expires in 1162 seconds)
Detected NAT type: Port Restricted

SIP	 SIMPLE	 CLIENT	 SDK 43

 43

Incoming audio session from 'sip:adi@umts.ro', do you want to accept?
(y/n)
Audio session established using "speex" codec at 16000Hz
Audio RTP endpoints 192.168.1.124:50378 <-> 85.17.186.6:58868
RTP audio stream is encrypted
Remote SIP User Agent is "Blink-0.9.0"
Remote party has put the audio session on hold
Audio session is put on hold
Audio session ended by remote party
Session duration was 6 seconds
2009-08-25 16:37:44 Registration ended.

Outgoing Session

adigeo@ag-blink:~$sip-audio-session -a umts ag@ag-projects.com
Using account adi@umts.ro
Logging SIP trace to file "/Users/adigeo/Library/Application
Support/Blink/logs/sip_trace.txt"
Logging PJSIP trace to file "/Users/adigeo/Library/Application
Support/Blink/logs/pjsip_trace.txt"
Available audio input devices: None, system_default, Built-in Input,
Built-in Microphone
Available audio output devices: None, system_default, Built-in Output
Using audio input device: Built-in Microphone
Using audio output device: Built-in Output
Using audio alert device: Built-in Output

Available control keys:
 s: toggle SIP trace on the console
 j: toggle PJSIP trace on the console
 n: toggle notifications trace on the console
 p: toggle printing RTP statistics on the console
 h: hang-up the active session
 r: toggle audio recording
 m: mute the microphone
 i: change audio input device
 o: change audio output device
 a: change audio alert device
 <>: adjust echo cancellation
 SPACE: hold/unhold
 Ctrl-d: quit the program
 ?: display this help message

Initiating SIP audio session from 'sip:adi@umts.ro' to 'sip:ag@ag-
projects.com' via sip:85.17.186.7:5060;transport=udp...
Audio session established using "speex" codec at 16000Hz
ICE negotiation succeeded in 1s:412
Audio RTP endpoints 192.168.1.124:50852 (ICE type host) <->
192.168.1.124:50871 (ICE type host)
RTP audio stream is encrypted
Audio session is put on hold
Remote party has put the audio session on hold
Detected NAT type: Port Restricted
Ending audio session...
Audio session ended by local party

 44

Session duration was 7 seconds

Alarm System

sip-audio-session script can be used for end-to-end testing of a SIP service including
the RTP media path. The following failures can be detected:

1. Timeout
2. Negative response code
3. Lack of RTP media after the SIP session has been established
4. Missing ACK

To setup the alarm system start periodically a caller script from a monitoring
software using the following arguments:

sip-audio-session --auto-hangup user@domain

Where the user@domain has been configured as the SIP account of the listener, can
be an answering machine on the PSTN network. The caller script hangs up after each
call. The shell return code can be used to determine if the session setup has failed.

To receive calls and answer them automatically you can also use sip_audio_session
script as follows:

sip-audio-session --daemonize

You must run the script as user root. The --daemonize option puts the client in the
background and the logging goes to /var/log/syslog. The program saves its pid file to
/var/run/sip_audio_session.pid.

SIP	 SIMPLE	 CLIENT	 SDK 45

 45

sip-session

Implemented in sipclients/sip-session

Setup one or more SIP sessions with Audio (RTP/sRTP), IM and File Transfer (MSRP).

Description

sip-session command line script is a show-case for the powerful features of SIP
SIMPLE development kit related to establishing, modifying and terminating SIP
sessions with multiple media types like VoIP, Instant Messaging and File Transfer.

The script has the following features:

1. Registers with a SIP registrar and is available for incoming sessions
2. Switches between multiple sessions and provides in-call controls like Hold and

Mute
3. Handles outgoing SIP sessions with combinations of media types based on

RTP and MSRP protocols
4. Performs NAT traversal using ICE and MSRP relay extension
5. Provides control for the input, output and alert audio devices
6. Records the RTP audio streams (input, output or combined)
7. Enable text input and output for Instant Messaging sessions
8. Provides File Transfer capability with progress indicator
9. Gives access to real-time traces of involved protocols (DNS, SIP and MSRP)

Example

adigeo@ag-imac3:~$sip-session
Using account adi@umts.ro
adi@umts.ro> /help
General commands:
 /call {user[@domain]}: call the specified user using audio and chat
 /audio {user[@domain]} [+chat]: call the specified user using audio
and possibly chat
 /chat {user[@domain]} [+audio]: call the specified user using chat and
possibly audio
 /send {user[@domain]} {file}: initiate a file transfer with the
specified user
 /next: select the next connected session
 /prev: select the previous connected session
 /sessions: show the list of connected sessions
 /trace [[+|-]sip] [[+|-]msrp] [[+|-]pjsip] [[+|-]notifications]:
toggle/set tracing on the console (ctrl-x s | ctrl-x m | ctrl-x j |
ctrl-x n)
 /rtp [on|off]: toggle/set printing RTP statistics and ICE negotiation
results on the console (ctrl-x p)
 /mute [on|off]: mute the microphone (ctrl-x u)
 /input [device]: change audio input device (ctrl-x i)
 /output [device]: change audio output device (ctrl-x o)
 /alert [device]: change audio alert device (ctrl-x a)
 /echo [+|-][value]: adjust echo cancellation (ctrl-x < | ctrl-x >)
 /quit: quit the program (ctrl-x q)

 46

 /help: display this help message (ctrl-x ?)

In call commands:
 /hangup: hang-up the active session (ctrl-x h)
 /dtmf {0-9|*|#|A-D}...: send DTMF tones (ctrl-x 0-9|*|#|A-D)
 /record [on|off]: toggle/set audio recording (ctrl-x r)
 /hold [on|off]: hold/unhold (ctrl-x SPACE)
 /add {chat|audio}: add a stream to the current session
 /remove {chat|audio}: remove a stream from the current session
 /add_participant {user@domain}: add the specified user to the
conference
 /remove_participant {user@domain}: remove the specified user from the
conference
 /transfer {user@domain}: transfer (using blind transfer) callee to the
specified destination

Available audio input devices: None, system_default, Built-in Input,
Built-in Microphone
Available audio output devices: None, system_default, Built-in Output
Using audio input device: Built-in Microphone (system default device)
Using audio output device: Built-in Output (system default device)
Using audio alert device: Built-in Output
Type /help to see a list of available commands.
2009-10-29 22:42:14 Registered contact
"sip:puioxbqy@192.168.1.124:50150" (expires in 600 seconds).
Other registered contacts:
 sip:jiozqyud@192.168.1.124:49569 (expires in 423 seconds)
Detected NAT type: Port Restricted
adi@umts.ro>

ICE connectivity checks results:

adi@umts.ro> /rtp
Output of RTP statistics and ICE negotiation results on console is now
activated
adi@umts.ro> /audio ag@sip2sip.info
Initiating SIP session from 'sip:adi@umts.ro' to 'sip:ag@sip2sip.info'
via sip:81.23.228.150:5060;transport=udp...

ICE negotiation succeeded in 0s:644

Local ICE candidates:
(RTP) 95.97.50.27:55656 type srflx
(RTP) 192.168.1.122:55656 type host
(RTP) 10.211.55.2:55656 type host
(RTP) 10.37.129.2:55656 type host
(RTCP) 95.97.50.27:55890 type srflx
(RTCP) 192.168.1.122:55890 type host
(RTCP) 10.211.55.2:55890 type host
(RTCP) 10.37.129.2:55890 type host
(RTP) 81.23.228.150:51782 type prflx
(RTCP) 81.23.228.150:51783 type prflx

Remote ICE candidates:
(RTP) 81.23.228.150:51780 type relay
(RTCP) 81.23.228.150:51781 type relay
(RTP) 95.97.50.27:55876 type srflx

SIP	 SIMPLE	 CLIENT	 SDK 47

 47

(RTP) 192.168.1.122:55876 type host
(RTP) 10.211.55.2:55876 type host
(RTP) 10.37.129.2:55876 type host
(RTCP) 95.97.50.27:54037 type srflx
(RTCP) 192.168.1.122:54037 type host
(RTCP) 10.211.55.2:54037 type host
(RTCP) 10.37.129.2:54037 type host

ICE connectivity check results:
(RTP) 192.168.1.122:55656 <--> 192.168.1.122:55876 Succeeded
(RTP) 10.211.55.2:55656 <--> 10.211.55.2:55876 Succeeded
(RTP) 10.37.129.2:55656 <--> 10.37.129.2:55876 Succeeded
(RTCP) 192.168.1.122:55890 <--> 192.168.1.122:54037 Succeeded
(RTCP) 10.211.55.2:55890 <--> 10.211.55.2:54037 Succeeded
(RTCP) 10.37.129.2:55890 <--> 10.37.129.2:54037 Succeeded
(RTP) 95.97.50.27:55656 <--> 95.97.50.27:55876 Succeeded
(RTCP) 95.97.50.27:55890 <--> 95.97.50.27:54037 Succeeded
(RTP) 81.23.228.150:51782 <--> 81.23.228.150:51780 Succeeded
(RTCP) 81.23.228.150:51783 <--> 81.23.228.150:51781 Succeeded

Audio session established using "G722" codec at 16000Hz
Audio RTP endpoints 192.168.1.122:55656 (ICE type host) <->
192.168.1.122:55876 (ICE type host)

 48

sip-message

Implemented in sipclients/sip-message

Send and receive short messages in paging mode using SIP MESSAGE method.

Description

Usage: sip-message [options] [user@domain]

This will either sit idle waiting for an incoming MESSAGE request, or
send a
MESSAGE request to the specified SIP target. In outgoing mode the
program will
read the contents of the messages to be sent from standard input,
Ctrl+D
signalling EOF as usual. In listen mode the program will quit when
Ctrl+D is
pressed.

Options:
 -h, --help show this help message and exit
 -a NAME, --account=NAME
 The account name to use for any outgoing
traffic. If
 not supplied, the default account will be used.
 -c FILE, --config-file=FILE
 The path to a configuration file to use. This
 overrides the default location of the
configuration
 file.
 -s, --trace-sip Dump the raw contents of incoming and outgoing
SIP
 messages.
 -j, --trace-pjsip Print PJSIP logging output.
 -n, --trace-notifications
 Print all notifications (disabled by default).
 -b, --batch Run the program in batch mode: reading control
input
 from the console is disabled. This is
particularly
 useful when running this script in a non-
interactive
 environment.
 -m MESSAGE, --message=MESSAGE
 Contents of the message to send. This disables
reading
 the message from standard input.

SIP	 SIMPLE	 CLIENT	 SDK 49

 49

Example for receiving a message

adigeo@ag-imac3:~$sip-message
Accounts available: 'alice', 'ew', 'mrg', 'pbx', 'tf', 'umts', 'unet',
default
Using default account: 31208005169@ag-projects.com
Registering ""Adrian G." <sip:31208005169@ag-projects.com>" at
81.23.228.150:5060
REGISTER was successful
Contact: <sip:4f855cb09b@192.168.1.6:51408> (expires in 300 seconds)
Other registered contacts:
<sip:31208005169@192.168.1.122:5062;line=634g6j67> (expires in 480
seconds)
<sip:5dac4295e9@192.168.1.6:51375> (expires in 95 seconds)
<sip:31208005169@192.168.1.123:5060> (expires in 77 seconds)
<sip:31208005169@192.168.1.1;uniq=5B2860C44383A3D6705629A7E1FB8>
(expires in 1563 seconds)
<sip:31208005169@80.101.96.20:61578> (expires in 3069 seconds)
Press Ctrl+D to stop the program.
Received MESSAGE from ""Adi UMTS" <sip:adi@umts.ro>", Content-Type:
text/plain
dsgsgddsgs
Received MESSAGE from ""Adi UMTS" <sip:adi@umts.ro>", Content-Type:
text/plain
Testing short text messages in page mode!

Example for sending a message

adigeo@ag-imac3:~$sip-message -a umts ag@ag-projects.com
Accounts available: 'alice', 'ew', 'mrg', 'pbx', 'tf', 'umts', 'unet',
default
Using account 'umts': adi@umts.ro
Press Ctrl+D on an empty line to end input and send the MESSAGE
request.
dsgsgddsgs
Sending MESSAGE from ""Adi UMTS" <sip:adi@umts.ro>" to "<sip:ag@ag-
projects.com>" using proxy 81.23.228.150:5060
MESSAGE was accepted by remote party.
adigeo@ag-imac3:~$sip_message -a umts ag@ag-projects.com
Accounts available: 'alice', 'ew', 'mrg', 'pbx', 'tf', 'umts', 'unet',
default
Using account 'umts': adi@umts.ro
Press Ctrl+D on an empty line to end input and send the MESSAGE
request.
Testing short text messages in page mode!
Sending MESSAGE from ""Adi UMTS" <sip:adi@umts.ro>" to "<sip:ag@ag-
projects.com>" using proxy 81.23.228.150:5060
MESSAGE was accepted by remote party.

 50

Presence
You can use these scripts to Publish, Subscribe and handle incoming Notifies to and
from a Presence Agent or manage documents on an XCAP server.

sip-publish-presence

PUBLISH presence to a Presence Agent

sip-subscribe-winfo

SUBSCRIBE to the watcher list for given SIP address on the Presence Agent

sip-subscribe-presence

SUBSCRIBE to Presence Event for a given SIP address

sip-subscribe-rls

SUBSCRIBE for Presence Event to a list managed by a Resource List Server

sip-subscribe-mwi

SUBSCRIBE for Message Waiting Indicator

xcap-directory

Show the XCAP documents stored in the XCAP server for the given account

xcap-icon

Stores and retrieves the icon for the given account

xcap-pres-rules

Manage the content of the pres-rules XCAP document

xcap-dialog-rules

Manage the content of the dialog-rules XCAP document

xcap-rls-services

Manage the content of a RLS services XCAP document

SIP	 SIMPLE	 CLIENT	 SDK 51

 51

Developer Guide
The goal of SIP SIMPLE client SDK is to allow easy development of Real Time
Applications based on SIP and related protocols. By using this SDK you can add
Audio, Video, Instant Messaging, File Transfer and Desktop Sharing capabilities to an
existing product or create a new product from scratch.

Prerequisites

To use SIP SIMPLE client SDK you must:

• Be familiar with Python programming language
• Have basic knowledge of SIP protocol
• Use a supported platform as described in the Installation Instructions

Middleware API

To develop your SIP application you use the Middleware API that hides the
complexity of the interactions of the low level SIP, DNS, SDP, RTP, ICE, MSRP and
XCAP protocols.

Low Level API

The following APIs provide granular control over their respective components:

• SIP Core API - SIP, RTP, ICE and Audio Engine
• MSRP API - Message Session Relay Protocol (MSRP) and its Relay Extension
• XCAP API - Manage presence policy documents on XCAP servers
• Payloads API - Payloads used for publication, subscription and notifications of SIP

events

 52

Middleware API
This chapter describes the Middleware API for SIP SIMPLE client SDK that can be
used for developing a user interface (e.g. Graphical User Interface). The Middleware
provides a non-blocking API that communicates with the user interface
asynchronously by using Notifications.

For its configuration, the Middleware uses the Configuration API.

SIP	 SIMPLE	 CLIENT	 SDK 53

 53

SIPApplication

Implemented in sipsimple/application.py

Implements a high-level application responsable for starting and stopping various
sub-systems required to implement a fully featured SIP User Agent application. The
SIPApplication class is a Singleton and can be instantiated from any part of the code,
obtaining a reference to the same object. The SIPApplication takes care of initializing
the following components:

1. the twisted thread
2. the configuration system, via the ConfigurationManager
3. the core Engine using the settings in the configuration
4. the AccountManager, using the accounts in the configuration
5. the SessionManager, in order to handle incoming sessions
6. two AudioBridges, using the settings in the configuration

The attributes in this class can be set and accessed on both this class and its
subclasses, as they are implemented using descriptors which keep single value for
each attribute, irrespective of the class from which that attribute is set/accessed.
Usually, all attributes should be considered read-only.

methods

__init__(self)

Instantiates a new SIPApplication.

start(self, storage)

Starts the SIPApplication which initializes all the components in the correct order.
The storage is saved as an attribute which other entities like the Configuration
Manager will use to take the appropriate backend. If any error occurs with loading
the configuration, the exception raised by the ConfigurationManager is propagated
by this method and SIPApplication can be started again. After this, any fatal errors
will result in the SIPApplication being stopped and unusable, which means the whole
application will need to stop. This method returns as soon as the twisted thread has
been started, which means the application must wait for the SIPApplicationDidStart
notification in order to know that the application started.

stop(self)

Stop all the components started by the SIPApplication. This method returns
immediately, but a SIPApplicationDidEnd notification is sent when all the components
have been stopped.

 54

attributes

running

True if the SIPApplication is running (it has been started and it has not been told to
stop), False otherwise.

storage

Holds an object which implements the ISIPSimpleStorage interface which will be
used to provide a storage facility to other middleware components.

local_nat_type

String containing the detected local NAT type.

alert_audio_mixer

The AudioMixer object created on the alert audio device as defined by the
configuration (by SIPSimpleSettings.audio.alert_device).

alert_audio_bridge

An AudioBridge where IAudioPort objects can be added to playback sound to the
alert device.

alert_audio_device

An AudioDevice which corresponds to the alert device as defined by the
configuration. This will always be part of the alert_audio_bridge.

voice_audio_mixer

The AudioMixer object created on the voice audio device as defined by the
configuration (by SIPSimpleSettings.audio.input_device and
SIPSimpleSettings.audio.output_device).

voice_audio_bridge

An AudioBridge where IAudioPort objects can be added to playback sound to the
output device or record sound from the input device.

voice_audio_device

An AudioDevice which corresponds to the voice device as defined by the
configuration. This will always be part of the voice_audio_bridge.

SIP	 SIMPLE	 CLIENT	 SDK 55

 55

notifications

SIPApplicationWillStart

This notification is sent just after the configuration has been loaded and the twisted
thread started, but before any other components have been initialized.

timestamp:

A datetime.datetime object indicating when the notification was sent.

SIPApplicationDidStart

This notification is sent when all the components have been initialized. Note: it
doesn't mean that all components have succeeded, for example, the account might
not have registered by this time, but the registration process will have started.

timestamp:

A datetime.datetime object indicating when the notification was sent.

SIPApplicationWillEnd

This notification is sent as soon as the stop() method has been called.

timestamp:

A datetime.datetime object indicating when the notification was sent.

SIPApplicationDidEnd

This notification is sent when all the components have been stopped. All components
have been given reasonable time to shutdown gracefully, such as the account
unregistering. However, because of factors outside the control of the middleware,
such as network problems, some components might not have actually shutdown
gracefully; this is needed because otherwise the SIPApplication could hang
indefinitely (for example because the system is no longer connected to a network
and it cannot be determined when it will be again).

timestamp:

A datetime.datetime object indicating when the notification was sent.

SIPApplicationFailedToStartTLS

This notification is sent when a problem arises with initializing the TLS transport. In
this case, the Engine will be started without TLS support and this notification
contains the error which identifies the cause for not being able to start the TLS
transport.

 56

timestamp:

A datetime.datetime object indicating when the notification was sent.

error:

The exception raised by the Engine which identifies the cause for not being able
to start the TLS transport.

SIP	 SIMPLE	 CLIENT	 SDK 57

 57

Storage API
Different middleware components may need to store data, i.e. configuration files or
XCAP documents. The Storage API defines a collection of backends which other
components will use to store their data.

API Definition

The Storage API currently requires the following attributes to be defined as per the
ISIPSimpleStorage interface:

configuration_backend

The backend used for storing the configuration.

xcap_storage_factory

Factory used to create XCAP storage backends for each account.

Provided implementations

Two storage implementations are provided: FileStorage and MemoryStorage both
located in the sipsimple.storage module.

 58

SIP Sessions
SIP sessions are supported by the sipsimple.session.Session class and independent
stream classes, which need to implement the sipsimple.streams.IMediaStream
interface.

The Session class takes care of the signalling, while the streams offer the actual
media support which is negotiated by the Session.

The streams which are implemented in the SIP SIMPLE middleware are provided in
modules within the sipsimple.streams package, but they are accessible for import
directly from sipsimple.streams. Currently, the middleware implements two types of
streams, one for RTP data, with a concrete implementation in the AudioStream class,
and one for MSRP sessions, with concrete implementations in the ChatStream,
FileTransferStream and DesktopSharingStream classes. However, the application can
provide its own stream implementation, provided they respect the IMediaStream
interface.

The sipsimple.streams module also provides a mechanism for automatically
registering media streams in order for them to be used for incoming sessions. This is
explained in more detail in MediaStreamRegistry.

SIP	 SIMPLE	 CLIENT	 SDK 59

 59

SessionManager

Implemented in sipsimple/session.py

The sipsimple.session.SessionManager class is a singleton, which acts as the central
aggregation point for sessions within the middleware. Although it is mainly used
internally, the application can use it to query information about all active sessions.

The SessionManager is implemented as a singleton, meaning that only one instance
of this class exists within the middleware. The SessionManager is started by the
SIPApplication and takes care of handling incoming sessions and closing all sessions
when SIPApplication is stopped.

attributes

sessions

A property providing a copy of the list of all active Sesssion objects within the
application, meaning any Session object that exists globally within the application
and is not in the NULL or TERMINATED state.

methods

__init__(self)

Instantiate a new SessionManager object.

start(self)

Start the SessionManager in order to be able to handle incoming sessions. This
method is called automatically when SIPApplication is started. The application should
not call this method directly.

stop(self)

End all connected sessions. This method is called automatically when SIPApplication
is stopped. The application should not call this method directly.

 60

Session

Implemented in sipsimple/session.py

A sipsimple.session.Session object represents a complete SIP session between the
local and a remote endpoints. Both incoming and outgoing sessions are represented
by this class.

A Session instance is a stateful object, meaning that it has a state attribute and that
the lifetime of the session traverses different states, from session creation to
termination. State changes are triggered by methods called on the object by the
application or by received network events. These states and their transitions are
represented in the following diagram:

SIP	 SIMPLE	 CLIENT	 SDK 61

 61

Although these states are crucial to the correct operation of the Session object, an
application using this object does not need to keep track of these states, as a set of
notifications is also emitted, which provide all the necessary information to the
application.

The Session is completely independent of the streams it contains, which need to be
implementations of the sipsimple.streams.IMediaStream interface. This interface
provides the API by which the Session communicates with the streams. This API
should not be used by the application, unless it also provides stream
implementations or a SIP INVITE session implementation.

methods

__init__(self, account)

Creates a new Session object in the None state.

account:

The local account to be associated with this Session.

connect(self, to_header, routes, streams, is_focus=False,
subject=None)

Will set up the Session as outbound and propose the new session to the specified
remote party and move the state machine to the outgoing state. Before contacting
the remote party, a SIPSessionNewOutgoing notification will be emitted. If there is a
failure or the remote party rejected the offer, a SIPSessionDidFail notification will be
sent. Any time a ringing indication is received from the remote party, a
SIPSessionGotRingIndication notification is sent. If the remote party accepted the
session, a SIPSessionWillStart notification will be sent, followed by a
SIPSessionDidStart notification when the session is actually established. This method
may only be called while in the None state.

 62

to_header:

A sipsimple.core.ToHeader object representing the remote identity to initiate the
session to.

routes:

An iterable of sipsimple.util.Route objects, specifying the IP, port and transport
to the outbound proxy. These routes will be tried in order, until one of them
succeeds.

streams:

A list of stream objects which will be offered to the remote endpoint.

is_focus:

Boolean flag indicating if the isfocus parameter should be added to the Contact
header according to RFC 4579.

subject:

Session subject. If not None a Subject header will be added with the specified
value.

send_ring_indication(self)

Sends a 180 provisional response in the case of an incoming session.

accept(self, streams)

Calling this methods will accept an incoming session and move the state machine to
the accepting state. When there is a new incoming session, a
SIPSessionNewIncoming notification is sent, after which the application can call this
method on the sender of the notification. After this method is called,
SIPSessionWillStart followed by SIPSessionDidStart will be emitted, or
SIPSessionDidFail on an error. This method may only be called while in the incoming
state.

streams:

A list of streams which needs to be a subset of the proposed streams which
indicates which streams are to be accepted. All the other proposed streams will
be rejected.

reject(self, code=603, reason=None)

Reject an incoming session and move it to the terminaing state, which eventually
leads to the terminated state. Calling this method will cause the Session object to
emit a SIPSessionDidFail notification once the session has been rejected. This
method may only be called while in the incoming state.

SIP	 SIMPLE	 CLIENT	 SDK 63

 63

code:

An integer which represents the SIP status code in the response which is to be
sent. Usually, this is either 486 (Busy) or 603 (Decline/Busy Everywhere).

reason:

The string which is to be sent as the SIP status reason in the response, or None
if PJSIP's default reason for the specified code is to be sent.

accept_proposal(self, streams)

When the remote party proposes to add some new streams, signaled by the
SIPSessionGotProposal notification, the application can use this method to accept the
stream(s) being proposed. After calling this method a SIPSessionGotAcceptProposal
notification is sent, unless an error occurs while setting up the new stream, in which
case a SIPSessionHadProposalFailure notification is sent and a rejection is sent to the
remote party. As with any action which causes the streams in the session to change,
a SIPSessionDidRenegotiateStreams notification is also sent. This method may only
be called while in the received_proposal state.

streams:

A list of streams which needs to be a subset of the proposed streams which indicates
which streams are to be accepted. All the other proposed streams will be rejected.

reject_proposal(self, code=488, reason=None)

When the remote party proposes new streams that the application does not want to
accept, this method can be used to reject the proposal, after which a
SIPSessionGotRejectProposal or SIPSessionHadProposalFailure notification is sent.
This method may only be called while in the received_proposal state.

code:

An integer which represents the SIP status code in the response which is to be
sent. Usually, this is 488 (Not Acceptable Here).

reason:

The string which is to be sent as the SIP status reason in the response, or None
if PJSIP's default reason for the specified code is to be sent.

add_stream(self, stream)

Proposes a new stream to the remote party. Calling this method will cause a
SIPSessionGotProposal notification to be emitted. After this, the state machine will
move into the sending_proposal state until either a SIPSessionGotAcceptProposal,
SIPSessionGotRejectProposal or SIPSessionHadProposalFailure notification is sent,
informing the application if the remote party accepted the proposal. As with any
action which causes the streams in the session to change, a
SIPSessionDidRenegotiateStreams notification is also sent. This method may only be
called while in the connected state.

 64

remove_stream(self, stream)

Stop the stream and remove it from the session, informing the remote party of this.
Although technically this is also done via an SDP negotiation which may fail, the
stream will always get remove (if the remote party refuses the re-INVITE, the result
will be that the remote party will have a different view of the active streams than the
local party). This method may only be called while in the connected state.

cancel_proposal(self)

This method cancels a proposal of adding a stream to the session by sending a
CANCEL request. A SIPSessionGotRejectProposal notification will be sent with code
487.

hold(self)

Put the streams of the session which support the notion of hold on hold. This will
cause a SIPSessionDidChangeHoldState notification to be sent. This method may be
called in any state and will send the re-INVITE as soon as it is possible.

unhold(self)

Take the streams of the session which support the notion of hold out of hold. This
will cause a SIPSessionDidChangeHoldState notification to be sent. This method may
be called in any state and will send teh re-INVITE as soon as it is possible.

end(self)

This method may be called any time after the Session has started in order to
terminate the session by sending a BYE request. Right before termination a
SIPSessionWillEnd notification is sent, after termination SIPSessionDidEnd is sent.

attributes

state

The state the object is currently in, being one of the states from the diagram above.

account

The sipsimple.account.Account or sipsimple.account.BonjourAccount object that the
Session is associated with. On an outbound session, this is the account the
application specified on object instantiation.

direction

A string indicating the direction of the initial negotiation of the session. This can be
either None, "incoming" or "outgoing".

SIP	 SIMPLE	 CLIENT	 SDK 65

 65

transport

A string representing the transport this Session is using: "udp", "tcp" or "tls".

start_time

The time the session started as a datetime.datetime object, or None if the session
was not yet started.

stop_time

The time the session stopped as a datetime.datetime object, or None if the session
has not yet terminated.

on_hold

Boolean indicating whether the session was put on hold, either by the local or the
remote party.

remote_user_agent

A string indicating the remote user agent, if it provided one. Initially this will be
None, it will be set as soon as this information is received from the remote party
(which may be never).

local_identity

The sipsimple.core.FrozenFromHeader or sipsimple.core.FrozenToHeader identifying
the local party, if the session is active, None otherwise.

remote_identity

The sipsimple.core.FrozenFromHeader or sipsimple.core.FrozenToHeader identifying
the remote party, if the session is active, None otherwise.

streams

A list of the currently active streams in the Session.

proposed_streams

A list of the currently proposed streams in the Session, or None if there is no
proposal in progress.

conference

 66

A ConferenceHandler object instance (or Null). It can be later used to add/remove
participants from a remote conference.

subject

The session subject as a unicode object.

notifications

SIPSessionNewIncoming

Will be sent when a new incoming Session is received. The application should listen
for this notification to get informed of incoming sessions.

timestamp:

A datetime.datetime object indicating when the notification was sent.

streams:

A list of streams that were proposed by the remote party.

SIPSessionNewOutgoing

Will be sent when the application requests a new outgoing Session.

timestamp:

A datetime.datetime object indicating when the notification was sent.

streams:

A list of streams that were proposed to the remote party.

SIPSessionGotRingIndication

Will be sent when an outgoing Session receives an indication that a remote device is
ringing.

timestamp:

A datetime.datetime object indicating when the notification was sent.

SIPSessionGotProvisionalResponse

Will be sent whenever the Session receives a provisional response as a result of
sending a (re-)INVITE.

SIP	 SIMPLE	 CLIENT	 SDK 67

 67

timestamp:

A datetime.datetime object indicating when the notification was sent.

code:

The SIP status code received.

reason:

The SIP status reason received.

SIPSessionWillStart

Will be sent just before a Session completes negotiation. In terms of SIP, this is sent
after the final response to the INVITE, but before the ACK.

timestamp:

A datetime.datetime object indicating when the notification was sent.

SIPSessionDidStart

Will be sent when a Session completes negotiation and all the streams have started.
In terms of SIP this is sent after the ACK was sent or received.

timestamp:

A datetime.datetime object indicating when the notification was sent.

streams:

The list of streams which now form the active streams of the Session.

SIPSessionDidFail

This notification is sent whenever the session fails before it starts. The failure reason
is included in the data attributes. This notification is never followed by
SIPSessionDidEnd.

 68

timestamp:

A datetime.datetime object indicating when the notification was sent.

originator:

A string indicating the originator of the Session. This will either be "local" or
"remote".

code:

The SIP error code of the failure.

reason:

A SIP status reason.

failure_reason:

A string which represents the reason for the failure, such as "user_request",
"missing ACK", "SIP core error...".

SIPSessionWillEnd

Will be sent just before terminating a Session.

timestamp:

A datetime.datetime object indicating when the notification was sent.

SIPSessionDidEnd

Will be sent always when a Session ends as a result of remote or local session
termination.

timestamp:

A datetime.datetime object indicating when the notification was sent.

originator:

A string indicating who originated the termination. This will either be "local" or
"remote".

end_reason:

A string representing the termination reason, such as "user_request", "SIP core
error...".

SIPSessionDidChangeHoldState

Will be sent when the session got put on hold or removed from hold, either by the
local or the remote party.

SIP	 SIMPLE	 CLIENT	 SDK 69

 69

timestamp:

A datetime.datetime object indicating when the notification was sent.

originator:

A string indicating who originated the hold request, and consequently in which
direction the session got put on hold.

on_hold:

True if there is at least one stream which is on hold and False otherwise.

partial:

True if there is at least one stream which is on hold and one stream which
supports hold but is not on hold and False otherwise.

SIPSessionGotProposal

Will be sent when either the local or the remote party proposes to add streams to
the session.

timestamp:

A datetime.datetime object indicating when the notification was sent.

originator:

The party that initiated the stream proposal, can be either "local" or "remote".

streams:

A list of streams that were proposed.

SIPSessionGotRejectProposal

Will be sent when either the local or the remote party rejects a proposal to have
streams added to the session.

timestamp:

A datetime.datetime object indicating when the notification was sent.

originator:

The party that initiated the stream proposal, can be either "local" or "remote".

code:

The code with which the proposal was rejected.

reason:

The reason for rejecting the stream proposal.

streams:

The list of streams which were rejected.

SIPSessionGotAcceptProposal

 70

Will be sent when either the local or the remote party accepts a proposal to have
stream(added to the session.

timestamp:

A datetime.datetime object indicating when the notification was sent.

originator:

The party that initiated the stream proposal, can be either "local" or "remote".

streams:

The list of streams which were accepted.

proposed_streams:

The list of streams which were originally proposed.

SIPSessionHadProposalFailure

Will be sent when a re-INVITE fails because of an internal reason (such as a stream
not being able to start).

timestamp:

A datetime.datetime object indicating when the notification was sent.

failure_reason:

The error which caused the proposal to fail.

streams:

THe streams which were part of this proposal.

SIPSessionDidRenegotiateStreams

Will be sent when a media stream is either activated or deactivated. An application
should listen to this notification in order to know when a media stream can be used.

timestamp:

A datetime.datetime object indicating when the notification was sent.

action:

A string which is either "add" or "remove" which specifies what happened to the
streams the notificaton referes to

streams:

A list with the streams which were added or removed.

SIPSessionDidProcessTransaction

Will be sent whenever a SIP transaction is complete in order to provide low-level
details of the progress of the INVITE dialog.

SIP	 SIMPLE	 CLIENT	 SDK 71

 71

timestamp:

A datetime.datetime object indicating when the notification was sent.

originator:

The initiator of the transaction, "local" or "remote".

method:

The method of the request.

code:

The SIP status code of the response.

reason:

The SIP status reason of the response.

ack_received:

This attribute is only present for INVITE transactions and has one of the values
True, False or "unknown". The last value may occur then PJSIP does not let us
know whether the ACK was received or not.

 72

IMediaStream

Implemented in sipsimple/streams/__init__.py

This interface describes the API which the Session uses to communicate with the
streams. All streams used by the Session must respect this interface.

methods

__init__(self, account)

Initializes the generic stream instance.

new_from_sdp(cls, account, remote_sdp, stream_index)

A classmethod which returns an instance of this stream implementation if the sdp is
accepted by the stream or None otherwise.

account:

The sipsimple.account.Account or sipsimple.account.BonjourAccount object the
session which this stream would be part of is associated with.

remote_sdp:

The FrozenSDPSession which was received by the remote offer.

stream_index:

An integer representing the index within the list of media streams within the
whole SDP which this stream would be instantiated for.

get_local_media(self, for_offer)

Return an SDPMediaStream which represents an offer for using this stream if
for_offer is True and a response to an SDP proposal otherwise.

for_offer:

True if the SDPMediaStream will be used for an SDP proposal and False if for a
response.

initialize(self, session, direction)

Initializes the stream. This method will get called as soon as the stream is known to
be at least offered as part of the Session. If initialization goes fine, the stream must
send a MediaStreamDidInitialize notification or a MediaStreamDidFail notification
otherwise.

SIP	 SIMPLE	 CLIENT	 SDK 73

 73

session:

The Session object this stream will be part of.

direction:

"incoming" if the stream was created because of a received proposal and
"outgoing" if a proposal was sent. Note that this need not be the same as the
initial direction of the Session since streams can be proposed in either way using
re-INVITEs.

start(self, local_sdp, remote_sdp, stream_index)

Starts the stream. This method will be called as soon is known to be used in the
Session (eg. only called for an incoming proposal if the local party accepts the
proposed stream). If starting succeeds, the stream must send a
MediaStreamDidStart notification or a MediaStreamDidFail notification otherwise.

local_sdp:

The FrozenSDPSession which is used by the local endpoint.

remote_sdp:

The FrozenSDPSession which is used by the remote endpoint.

stream_index:

An integer representing the index within the list of media streams within the
whole SDP which this stream is represented by.

validate_update(self, remote_sdp, stream_index)

This method will be called when a re-INVITE is received which changes the
parameters of the stream within the SDP. The stream must return True if the
changes are acceptable or False otherwise. If any changed streams return False for a
re-INVITE, the re-INVITE will be refused with a negative response. This means that
streams must not changed any internal data when this method is called as the
update is not guaranteed to be applied even if the stream returns True.

remote_sdp:

The FrozenSDPSession which is used by the remote endpoint.

stream_index:

An integer representing the index within the list of media streams within the
whole SDP which this stream is represented by.

update(self, local_sdp, remote_sdp, stream_index)

This method is called when the an SDP negotiation initiated by either the local party
or the remote party succeeds. The stream must update its internal state according to
the new SDP in use.

 74

local_sdp:

The FrozenSDPSession which is used by the local endpoint.

remote_sdp:

The FrozenSDPSession which is used by the remote endpoint.

stream_index:

An integer representing the index within the list of media streams within the
whole SDP which this stream is represented by.

hold(self)

Puts the stream on hold if supported by the stream. Typically used by audio and
video streams. The stream must immediately stop sending/receiving data and calls
to get_local_media() following calls to this method must return an SDP which reflects
the new hold state.

unhold(self)

Takes the stream off hold. Typically used by audio and video streams. Calls to
get_local_media() following calls to this method must return an SDP which reflects
the new hold state.

deactivate(self)

This method is called on a stream just before the stream will be removed from the
Session (either as a result of a re-INVITE or a BYE). This method is needed because
it avoids a race condition with streams using stateful protocols such as TCP: the
stream connection might be terminated before the SIP signalling announces this due
to network routing inconsistencies and the other endpoint would not be able to
distinguish between this case and an error which caused the stream transport to fail.
The stream must not take any action, but must consider that the transport being
closed by the other endpoint after this method was called as a normal situation
rather than an error condition.

end(self)

Ends the stream. This must close the underlying transport connection. The stream
must send a MediaStreamWillEnd just after this method is called and a
MediaStreamDidEnd as soon as the operation is complete. This method is always be
called by the Session on the stream if at least the initialize() method has been called.
This means that once a stream sends the MediaStreamDidFail notification, the
Session will still call this method.

attributes

type (class attribute)

A string identifying the stream type (eg: "audio", "video").

SIP	 SIMPLE	 CLIENT	 SDK 75

 75

priority (class attribute)

An integer value indicating the stream priority relative to the other streams types
(higher numbers have higher priority).

hold_supported

True if the stream supports hold

on_hold_by_local

True if the stream is on hold by the local party

on_hold_by_remote

True if the stream is on hold by the remote

on_hold

True if either on_hold_by_local or on_hold_by_remote is true

notifications

These notifications must be generated by all streams in order for the Session to
know the state of the stream.

MediaStreamDidInitialize

Sent when the stream has been successfully initialized.

MediaStreamDidStart

Sent when the stream has been successfully started.

MediaStreamDidFail

Sent when the stream has failed either as a result of calling one of its methods, or
during the normal operation of the stream (such as the transport connection being
closed).

MediaStreamWillEnd

Sent immediately after the end() method is called.

MediaStreamDidEnd

 76

Sent when the end() method finished closing the stream.

SIP	 SIMPLE	 CLIENT	 SDK 77

 77

MediaStreamRegistry
The MediaStream registry is a collection of classes which implement IMediaStream.
This collection is used by the Session to select a stream class for instantiation in the
case of an incomming session. The streams are included in the collection in the
descending order of their priority. Thus, streams with a higher priority will be tried
first by the Session. This object is a Singleton so references to the same object can
be obtained by a simple instantiation.

There are several pre-built streams based on the IMediaStream API:

sipsimple.streams.rtp.AudioStream

Audio stream based on RTP

sipsimple.streams.msrp.ChatStream

Chat stream based on MSRP

sipsimple.streams.msrp.FileTransferStream

File Transfer stream based on MSRP

sipsimple.streams.msrp.DesktopSharingStream

Desktop Sharing stream based on VNC over MSRP

Other streams which are created by the application must be registered in this
registry. For a simple way of doing this, see MediaStreamRegistrar.

methods

__init__(self)

Instantiate the MediaStreamRegistry. This will be called just once when first (and
only) instance is created.

__iter__(self)

This method allows the registry to be iterated through and will return classes which
were registered to it.

add(self, cls)

Add cls to the registry of streams. The class must implement the IMediaStream
interface.

 78

MediaStreamRegistrar
This is a convenience metaclass which automatically registers a defined class with
the MediaStreamRegistry. In order to use this class, one simply needs to use it as
the metaclass of the new stream.

from zope.interface import implements
from sipsimple.streams import IMediaStream, MediaStreamRegistrar

class MyStream(object):
__metaclass__ = MediaStreamRegistrar

implements(IMediaStream)
[...]

SIP	 SIMPLE	 CLIENT	 SDK 79

 79

AudioStream

Implemented in sipsimple/streams/rtp.py

The AudioStream is an implementation of IMediaStream which supports audio data
using the AudioTransport and RTPTransport of the SIP core. As such, it provides all
features of these objects, including ICE negotiation. An example SDP created using
the AudioStream is provided below:

Content-Type: application/sdp
Content-Length: 1093

v=0
o=- 3467525278 3467525278 IN IP4 192.168.1.6
s=blink-0.10.7-beta
c=IN IP4 80.101.96.20
t=0 0
m=audio 55328 RTP/AVP 104 103 102 3 9 0 8 101
a=rtcp:55329 IN IP4 80.101.96.20
a=rtpmap:104 speex/32000
a=rtpmap:103 speex/16000
a=rtpmap:102 speex/8000
a=rtpmap:3 GSM/8000
a=rtpmap:9 G722/8000
a=rtpmap:0 PCMU/8000
a=rtpmap:8 PCMA/8000
a=rtpmap:101 telephone-event/8000
a=fmtp:101 0-15
a=crypto:1 AES_CM_128_HMAC_SHA1_80
inline:esI6DbLY1+Aceu0JNswN9Z10DcFx5cZwqJcu91jb
a=crypto:2 AES_CM_128_HMAC_SHA1_32
inline:SHuEMm1BYJqOF4udKl73EaCwnsI57pO86bYKsg70
a=ice-ufrag:2701ed80
a=ice-pwd:6f8f8281
a=candidate:S 1 UDP 31 80.101.96.20 55328 typ srflx raddr 192.168.1.6
rport 55328
a=candidate:H 1 UDP 23 192.168.1.6 55328 typ host
a=candidate:H 1 UDP 23 10.211.55.2 55328 typ host
a=candidate:H 1 UDP 23 10.37.129.2 55328 typ host
a=candidate:S 2 UDP 30 80.101.96.20 55329 typ srflx raddr 192.168.1.6
rport 55329
a=candidate:H 2 UDP 22 192.168.1.6 55329 typ host
a=candidate:H 2 UDP 22 10.211.55.2 55329 typ host
a=candidate:H 2 UDP 22 10.37.129.2 55329 typ host
a=sendrecv

As an implementation of IAudioPort, an AudioStream can be added to an AudioBridge
to send or to read audio data to/from other audio objects. It is connected to the
voice AudioMixer (SIPApplication.voice_audio_mixer) so it can only be added to
bridges using the same AudioMixer. It also contains an AudioBridge on the bridge
attribute which always contains an AudioDevice corresponding to the input and
output devices; when the stream is active (started and not on hold), the bridge also

 80

contains the stream itself and when recording is active, the stream contains a
WaveRecorder which records audio data.

methods

start_recording(self, filename=None)

If an audio stream is present within this session, calling this method will record the
audio to a .wav file. Note that when the session is on hold, nothing will be recorded
to the file. Right before starting the recording a SIPSessionWillStartRecordingAudio
notification will be emitted, followed by a SIPSessionDidStartRecordingAudio. This
method may only be called while the stream is started.

filename:

The name of the .wav file to record to. If this is set to None, a default file name
including the session participants and the timestamp will be generated using the
directory defined in the configuration.

stop_recording(self)

This will stop a previously started recording. Before stopping, a
SIPSessionWillStopRecordingAudio notification will be sent, followed by a
SIPSessionDidStopRecordingAudio.

send_dtmf(self, digit)

If the audio stream is started, sends a DTMF digit to the remote party.

digit:

This should a string of length 1, containing a valid DTMF digit value (0-9, A-D, *
or #).

attributes

sample_rate

If the audio stream was started, this attribute contains the sample rate of the audio
negotiated.

codec

If the audio stream was started, this attribute contains the name of the audio codec
that was negotiated.

srtp_active

If the audio stream was started, this boolean attribute indicates if SRTP is currently
being used on the stream.

SIP	 SIMPLE	 CLIENT	 SDK 81

 81

ice_active

True if the ICE candidates negotiated are being used, False otherwise.

local_rtp_address

If an audio stream is present within the session, this attribute contains the local IP
address used for the audio stream.

local_rtp_port

If an audio stream is present within the session, this attribute contains the local UDP
port used for the audio stream.

remote_rtp_address_sdp

If the audio stream was started, this attribute contains the IP address that the
remote party gave to send audio to.

remote_rtp_port_sdp

If the audio stream was started, this attribute contains the UDP port that the remote
party gave to send audio to.

remote_rtp_address_received

If the audio stream was started, this attribute contains the remote IP address from
which the audio stream is being received.

remote_rtp_port_received

If the audio stream was started, this attribute contains the remote UDP port from
which the audio stream is being received.

local_rtp_candidate_type

The local ICE candidate type which was selected by the ICE negotiation if it
succeeded and None otherwise.

remote_rtp_candidate_type

The remote ICE candidate type which was selected by the ICE negotiation if it
succeeded and None otherwise.

recording_filename

 82

If the audio stream is currently being recorded to disk, this property contains the
name of the .wav file being recorded to.

notifications

AudioStreamDidChangeHoldState

Will be sent when the hold state is changed as a result of either a SIP message
received on the network or the application calling the hold()/unhold() methods on
the Session this stream is part of.

timestamp:

A datetime.datetime object indicating when the notification was sent.

originator:

A string representing the party which requested the hold change, "local" or
"remote"

on_hold:

A boolean indicating the new hold state from the point of view of the originator.

AudioStreamWillStartRecordingAudio

Will be sent when the application requested that the audio stream be recorded to a
.wav file, just before recording starts.

timestamp:

A datetime.datetime object indicating when the notification was sent.

filename:

The full path to the .wav file being recorded to.

AudioStreamDidStartRecordingAudio

Will be sent when the application requested that the audio stream be recorded to a
.wav file, just after recording started.

timestamp:

A datetime.datetime object indicating when the notification was sent.

filename:

The full path to the .wav file being recorded to.

AudioStreamWillStopRecordingAudio

Will be sent when the application requested ending the recording to a .wav file, just
before recording stops.

SIP	 SIMPLE	 CLIENT	 SDK 83

 83

timestamp:

A datetime.datetime object indicating when the notification was sent.

filename:

The full path to the .wav file being recorded to.

AudioStreamDidStopRecordingAudio

Will be sent when the application requested ending the recording to a .wav file, just
after recording stoped.

timestamp:

A datetime.datetime object indicating when the notification was sent.

filename:

The full path to the .wav file being recorded to.

AudioStreamDidChangeRTPParameters

This notification is sent when the RTP parameters are changed, such as codec,
sample rate, RTP port etc.

timestamp:

A datetime.datetime object indicating when the notification was sent.

AudioStreamGotDTMF

Will be send if there is a DMTF digit received from the remote party on the audio
stream.

timestamp:

A datetime.datetime object indicating when the notification was sent.

digit:

The DTMF digit that was received, in the form of a string of length 1.

AudioStreamICENegotiationStateDidChange

This notification is proxied from the RTPTransport and as such has the same data as
the RTPTransportICENegotiationStateDidChange.

AudioStreamICENegotiationDidSucceed

This notification is proxied from the RTPTransport and as such has the same data as
the RTPTransportICENegotiationDidSucceed.

AudioStreamICENegotiationDidFail

 84

This notification is proxied from the RTPTransport and as such has the same data as
the RTPTransportICENegotiationDidFail.

AudioStreamDidTimeout

This notification is proxied from the RTPTransport. It's sent when the RTP transport
did not receive any data after the specified amount of time (rtp.timeout setting in
the Account).

SIP	 SIMPLE	 CLIENT	 SDK 85

 85

MSRPStreamBase

Implemented in sipsimple/streams/msrp.py

The MSRPStreamBase is used as a base class for streams using the MSRP protocol.
Within the SIP SIMPLE middleware, this hold for the ChatStream, FileTransferStream
and DesktopSharingStream classes, however the application can also make use of
this class to implement some other streams based on the MSRP protocol as a
transport.

methods

Of the methods defined by the IMediaStream interface, only the new_from_sdp
method is not implemented in this base class and needs to be provided by the
subclasses. Also, the subclasses can defined methods of the form _handle_XXX,
where XXX is a MSRP method name in order to handle incoming MSRP requests.
Also, since this class registers as an observer for itself, it will receive the notifications
it sends so subclasses can define methods having the signature _NH_<notification
name>(self, notification) as used throughout the middleware in order to do various
things at the different points within the life-cycle of the stream.

attributes

The attributes defined in the IMediaStream interface which are not provided by this
class are:

1. type
2. priority

In addition, the following attributes need to be defined in the subclass in order for
the MSRPStreamBase class to take the correct decisions

media_type

The media type as included in the SDP (eg. "message", "application").

accept_types

A list of the MIME types which should be accepted by the stream (this is also sent
within the SDP).

accept_wrapped_types

A list of the MIME types which should be accepted by the stream while wrapped in a
message/cpim envelope.

use_msrp_session

A boolean indicating whether or not an MSRPSession should be used.

 86

notifications

While not technically notifications of MSRPStreamBase, these notifications are sent
from the middleware on behalf of the MSRPTransport used by a stream in the former
case, and anonymously in the latter.

MSRPTransportTrace

This notification is sent when an MSRP message is received for logging purposes.

timestamp:

A datetime.datetime object indicating when the notification was sent.

direction:

The direction of the message, "incoming" or "outgoing".

data:

The MSRP message as a string.

MSRPLibraryLog

This notification is sent anonymously whenever the MSRP library needs to log any
information.

timestamp:

A datetime.datetime object indicating when the notification was sent.

message:

The log message as a string.

level:

The log level at which the message was written. One of the levels DEBUG, INFO,
WARNING, ERROR, CRITICAL from the application.log.level object which is part
of the python-application library.

SIP	 SIMPLE	 CLIENT	 SDK 87

 87

ChatStream

Implemented in sipsimple/streams/msrp.py

sipsimple.streams.msrp.ChatStream implements session-based Instant Messaging
(IM) over MSRP. This class performs the following functions:

1. automatically wraps outgoing messages with Message/CPIM if that's
necessary according to accept-types

2. unwraps incoming Message/CPIM messages; for each incoming message, the
ChatStreamGotMessage notification is posted

3. composes iscomposing payloads and reacts to those received by sending the
ChatStreamGotComposingIndication notification

An example of an SDP created using this class follows:

Content-Type: application/sdp
Content-Length: 283

v=0
o=- 3467525214 3467525214 IN IP4 192.168.1.6
s=blink-0.10.7-beta
c=IN IP4 192.168.1.6
t=0 0
m=message 2855 TCP/TLS/MSRP *
a=path:msrps://192.168.1.6:2855/ca7940f12ddef14c3c32;tcp
a=accept-types:message/cpim text/* application/im-iscomposing+xml
a=accept-wrapped-types:*

methods

__init__(self, account, direction='sendrecv')

Initializes the ChatStream instance.

send_message(self, content, content_type='text/plain',
recipients=None, courtesy_recipients=None, subject=None,
timestamp=None, required=None, additional_headers=None)

Sends an IM message. Prefer Message/CPIM wrapper if it is supported. If called
before the connection was established, the messages will be queued until the stream
starts. Returns the generated MSRP message ID.

 88

content:

The content of the message.

content_type:

Content-Type of wrapped message if Message/CPIM is used (Content-Type of
MSRP message is always Message/CPIM in that case); otherwise, Content-Type
of MSRP message.

recipients:

The list of CPIMIdentity objects which will be used for the To header of the CPIM
wrapper. Used to override the default which depends on the remote identity.
May only differ from the default one if the remote party supports private
messages. If it does not, a ChatStreamError will be raised.

courtesy_recipients:

The list of CPIMIdentity objects which will be used for the cc header of the CPIM
wrapper. May only be specified if the remote party supports private messages
and CPIM is supported. If it does not, a ChatStreamError will be raised.

subject:

A string or MultilingualText which specifies the subject and its translations to be
added to the CPIM message. If CPIM is not supported, a ChatStreamError will be
raised.

required:

A list of strings describing the required capabilities that the other endpoint must
support in order to understand this CPIM message. If CPIM is not supported, a
ChatStreamError will be raised.

additional_headers:

A list of MSRP header objects which will be added to this CPIM message. If CPIM
is not supported, a ChatStreamError will be raised.

timestamp:

A datetime.datetime object representing the timestamp to put on the CPIM
wrapper of the message. When set to None, a default one representing the
current moment will be added.

These MSRP headers are used to enable end-to-end success reports and to disable
hop-to-hop successful responses:

1. Failure-Report: partial
2. Success-Report: yes

send_composing_indication(self, state, refresh, last_active=None,
recipients=None)

Sends an is-composing message to the listed recipients.

SIP	 SIMPLE	 CLIENT	 SDK 89

 89

state:

The state of the endpoint, "active" or "idle".

refresh:

How often the local endpoint will send is-composing indications to keep the state
from being reverted to "idle".

last_active:

A datatime.datetime object representing the moment when the local endpoint
was last active.

recipients:

The list of CPIMIdentity objects which will be used for the To header of the CPIM
wrapper. Used to override the default which depends on the remote identity.
May only differ from the default one if the remote party supports private
messages. If it does not, a ChatStreamError will be raised.

notifications

ChatStreamGotMessage

Sent whenever a new incoming message is received,

timestamp:

A datetime.datetime object indicating when the notification was sent.

message:

A ChatMessage or CPIMMessage instance, depending on whether a CPIM
message was received or not.

ChatStreamDidDeliverMessage

Sent when a successful report is received.

 90

timestamp:

A datetime.datetime object indicating when the notification was sent.

message_id:

Text identifier of the message.

code:

The status code received. Will always be 200 for this notification.

reason:

The status reason received.

chunk:

A msrplib.protocol.MSRPData instance providing all the MSRP information about
the report.

ChatStreamDidNotDeliverMessage

Sent when a failure report is received.

timestamp:

A datetime.datetime object indicating when the notification was sent.

message_id:

Text identifier of the message.

code:

The status code received.

reason:

The status reason received.

chunk:

A msrplib.protocol.MSRPData instance providing all the MSRP information about
the report.

ChatStreamDidSendMessage

Sent when an outgoing message has been sent.

timestamp:

A datetime.datetime object indicating when the notification was sent.

message:

A msrplib.protocol.MSRPData instance providing all the MSRP information about
the sent message.

ChatStreamGotComposingIndication

Sent when a is-composing payload is received.

SIP	 SIMPLE	 CLIENT	 SDK 91

 91

timestamp:

A datetime.datetime object indicating when the notification was sent.

state:

The state of the endpoint, "active" or "idle".

refresh:

How often the remote endpoint will send is-composing indications to keep the
state from being reverted to "idle". May be None.

last_active:

A datatime.datetime object representing the moment when the remote endpoint
was last active. May be None.

content_type:

The MIME type of message being composed. May be None.

sender:

The ChatIdentity or CPIMIdentity instance which identifies the sender of the is-
composing indication.

recipients:

The ChatIdentity or CPIMIdentity instances list which identifies the recipients of
the is-composing indication.

 92

FileSelector
The FileSelector is used to contain information about a file tranfer using the
FileTransferStream documented below.

methods

__init__(self, name=None, type=None, size=None, hash=None,
fd=None)

Instantiate a new FileSelector. All the arguments are also available as attributes.

name:

The filename (should be just the base name).

type:

The type of the file.

size:

The size of the file in bytes.

hash:

The hash of the file in the following format: hash:sha-
1:XX, where
X is a hexadecimal digit. Currently, only SHA1 hashes are supported according
to the RFC.

fd:

A file descriptor if the application has already opened the file.

parse(cls, string)

Parses a file selector from the SDP file-selector a attribute and returns a FileSelector
instance.

for_file(cls, path, content_type, compute_hash=True)

Returns a FileSelector instance for the specified file. The file identified by the path
must exist. Note that if compute_hash is True this method will block while the hash
is computed, a potentially long operation for large files.

SIP	 SIMPLE	 CLIENT	 SDK 93

 93

path:

The full path to the file.

content_type:

An optional MIME type which is to be included in the file-selector.

compute_hash:

Whether or not this method should compute the hash of the file.

compute_hash(self)

Compute the hash for this file selector. This method will block while the hash is
computed, a potentially long operation for large files.

attributes

sdp_repr

The SDP representation of the file-selector according to the RFC. This should be the
value of the file-selector SDP attribute.

 94

FileTransferStream

Implemented in sipsimple/streams/msrp.py

The FileTransferStream supports file transfer over MSRP according to RFC5547. An
example of SDP constructed using this stream follows:

Content-Type: application/sdp
Content-Length: 383

v=0
o=- 3467525166 3467525166 IN IP4 192.168.1.6
s=blink-0.10.7-beta
c=IN IP4 192.168.1.6
t=0 0
m=message 2855 TCP/TLS/MSRP *
a=path:msrps://192.168.1.6:2855/e593357dc9abe90754bd;tcp
a=sendonly
a=accept-types:*
a=accept-wrapped-types:*
a=file-selector:name:"reblink.pdf" type:com.adobe.pdf size:268759
hash:sha1:60:A1:BE:8D:71:DB:E3:8E:84:C9:2C:62:9E:F2:99:78:9D:68:79:F6

methods

__init__(self, account, file_selector=None)

Instantiate a new FileTransferStream. If this is constructed by the application for an
outgoing file transfer, the file_selector argument must be present.

account:

The sipsimple.account.Account or sipsimple.account.BonjourAccount instance
which will be associated with the stream.

file_selector:

The FileSelector instance which represents the file which is to be transferred.

notifications

FileTransferStreamDidDeliverChunk

This notification is sent for an outgoing file transfer when a success report is received
about part of the file being transferred.

SIP	 SIMPLE	 CLIENT	 SDK 95

 95

timestamp:

A datetime.datetime object indicating when the notification was sent.

message_id:

The MSRP message ID of the file transfer session.

chunk:

An msrplib.protocol.MSRPData instance represented the received REPORT.

code:

The status code received. Will always be 200 for this notification.

reason:

The status reason received.

transferred_bytes:

The number of bytes which have currently been successfully transferred.

file_size:

The size of the file being transferred.

FileTransferStreamDidNotDeliverChunk

timestamp:

A datetime.datetime object indicating when the notification was sent. This
notification is sent for an outgoing file transfer when a failure report is received
about part of the file being transferred.

message_id:

The MSRP message ID of the file transfer session.

chunk:

An msrplib.protocol.MSRPData instance represented the received REPORT.

code:

The status code received.

reason:

The status reason received.

FileTransferStreamDidFinish

This notification is sent when the incoming or outgoing file transfer is finished.

timestamp:

A datetime.datetime object indicating when the notification was sent.

FileTransferStreamGotChunk

 96

This notificaiton is sent for an incoming file transfer when a chunk of file data is
received.

timestamp:

A datetime.datetime object indicating when the notification was sent.

content:

The file part which was received, as a str.

content_type:

The MIME type of the file which is being transferred.

transferred_bytes:

The number of bytes which have currently been successfully transferred.

file_size:

The size of the file being transferred.

SIP	 SIMPLE	 CLIENT	 SDK 97

 97

IDesktopSharingHandler
This interface is used to describe the interface between a IDesktopSharingHandler,
which is responsible for consuming and producing RFB data, and the
DesktopSharingStream which is responsible for transporting the RFB data over
MSRP. The middleware provides four implementations of this interface:

1. InternalVNCViewerHandler
2. InternalVNCServerHandler
3. ExternalVNCViewerHandler
4. ExternalVNCServerHandler

methods

initialize(self, stream)

This method will be called by the DesktopSharingStream when the stream has been
started and RFB data can be transported. The stream has two attributes which are
relevant to the IDesktopSharingHandler: incoming_queue and outgoing_queue.
These attributes are eventlet.coros.queue instances which are used to transport RFB
data between the stream and the handler.

attributes

type

"active" or "passive" depending on whether the handler represents a VNC viewer or
server respectively.

notifications

DesktopSharingHandlerDidFail

This notification must be sent by the handler when an error occurs to notify the
stream that it should fail.

context:

A string describing when the handler failed, such as "reading", "sending" or
"connecting".

failure:

A twisted.python.failure.Failure instance describing the exception which led to
the failure.

reason:

A string describing the failure reason.

 98

InternalVNCViewerHandler
This is a concrete implementation of the IDesktopSharingHandler interface which can
be used for a VNC viewer implemented within the application.

methods

send(self, data)

Sends the specified data to the stream in order for it to be transported over MSRP to
the remote endpoint.

data:

The RFB data to be transported over MSRP, in the form of a str.

notifications

DesktopSharingStreamGotData

This notification is sent when data is received over MSRP.

data:

The RFB data from the remote endpoint, in the form of a str.

SIP	 SIMPLE	 CLIENT	 SDK 99

 99

InternalVNCServerHandler
This is a concrete implementation of the IDesktopSharingHandler interface which can
be used for a VNC server implemented within the application.

methods

send(self, data)

Sends the specified data to the stream in order for it to be transported over MSRP to
the remote endpoint.

data:

The RFB data to be transported over MSRP, in the form of a str.

notifications

DesktopSharingStreamGotData

This notification is sent when data is received over MSRP.

data:

The RFB data from the remote endpoint, in the form of a str.

 100

ExternalVNCViewerHandler
This implementation of IDesktopSharingHandler can be used for an external VNC
viewer which connects to a VNC server using TCP.

methods

__init__(self, address=("localhost", 0), connect_timeout=3)

This instantiates a new ExternalVNCViewerHandler which is listening on the provided
address, ready for the external VNC viewer to connect to it via TCP. After this
method returns, the attribute address can be used to find out exactly on what
address and port the handler is listening on. The handler will only accept one
conenction on this address.

address:

A tuple containing an IP address/hostname and a port on which the handler
should listen. Any data received on this socket will then be forwarded to the
stream and any data received from the stream will be forwarded to this socket.

attributes

address

A tuple containing an IP address and a port on which the handler is listening.

SIP	 SIMPLE	 CLIENT	 SDK 101

 101

ExternalVNCServerHandler
This implementation of IDesktopSharingHandler can be used for an external VNC
server to which handler will connect using TCP.

methods

__init__(self, address, connect_timeout=3)

This instantiates a new ExternalVNCServerHandler which will connect to the provided
address on which a VNC server must be listening before the stream using this
handler starts.

address:

A tuple containing an IP address/hostname and a port on which the VNC server
will be listening. Any data received on this socket will then be forwared to the
stream and any data received form the stream will be forwarded to this socket.

connect_timeout:

How long to wait to connect to the VNC server before giving up.

 102

DesktopSharingStream

Implemented in sipsimple/streams/msrp.py

This stream implements desktop sharing using MSRP as a transport protocol for RFB
data.

There is no standard defining this usage but is fairly easy to implement in clients that
already support MSRP. To traverse a NAT-ed router, a MSRP relay configured for the
called party domain is needed. Below is an example of the Session Description
Protocol used for establishing a Desktop sharing session:

m=application 2855 TCP/TLS/MSRP *
a=path:msrps://10.0.1.19:2855/b599b22d1b1d6a3324c8;tcp
a=accept-types:application/x-rfb
a=rfbsetup:active

methods

__init__(self, acount, handler)

Instantiate a new DesktopSharingStream.

account:

The sipsimple.account.Account or sipsimple.account.BonjourAccount instance
this stream is associated with.

handler:

An object implementing the IDesktopSharingHandler interface which will act as
the handler for RFB data.

attributes

handler

This is a writable property which can be used to get or set the object implementing
IDesktopSharingHandler which acts as the handler for RFB data. For incoming
DesktopSharingStreams, this must be set by the application before the stream
starts.

incoming_queue

A eventlet.coros.queue instance on which incoming RFB data is written. The handler
should wait for data on this queue.

outgoing_queue

SIP	 SIMPLE	 CLIENT	 SDK 103

 103

A eventlet.coros.queue instance on which outgoing RFB data is written. The handler
should write data on this queue.

 104

ConferenceHandler
This class is internal to the Session and provied the user with the ability to invite
participants to a conference hosted by the remote endpoint.

Adding and removing participants is performed using a REFER request as explained
in RFC 4579, section 5.5.

In addition, the ConferenceHandler will subscribe to the conference event in order to
get information about participants in the conference.

methods

add_participant(self, participant_uri)

Send a REFER request telling the server to invite the participant specified in
participant_uri to join the ongoing conference.

remove_participant(self, participant_uri)

Send a REFER request telling the server to remove the participant specified in
participant_uri from the ongoing conference.

notifications

All notifications are sent with the Session object as the sender.

SIPSessionGotConferenceInfo

This notification is sent when a NOTIFY is received with a valid conferene payload.

timestamp:

A datetime.datetime object indicating when the notification was sent.

conference_info:

The Conference payload object.

SIPConferenceDidAddParticipant

This notification is sent when a participant was successfully added to the conference.

timestamp:

A datetime.datetime object indicating when the notification was sent.

participant:

URI of the participant added to the conference.

SIPConferenceDidNotAddParticipant

SIP	 SIMPLE	 CLIENT	 SDK 105

 105

This notification is sent when a participant could not be added to the conference.

timestamp:

A datetime.datetime object indicating when the notification was sent.

participant:

URI of the participant added to the conference.

code:

SIP response code for the failure.

reason:

Reason for the failure.

SIPConferenceDidRemoveParticipant

This notification is sent when a participant was successfully removed from the
conference.

timestamp:

A datetime.datetime object indicating when the notification was sent.

participant:

URI of the participant removed from the conference.

SIPConferenceDidNotRemoveParticipant

This notification is sent when a participant could not be removed from the
conference.

timestamp:

A datetime.datetime object indicating when the notification was sent.
participant:
URI of the participant removed from the conference.

code:

SIP response code for the failure.

reason:

Reason for the failure.

SIPConferenceGotAddParticipantProgress

This notification is sent when a NOTIFY is received indicating the status of the add
participant operation.

 106

timestamp:

A datetime.datetime object indicating when the notification was sent.

participant:

URI of the participant whose operation is in progress.

code:

SIP response code for progress.

reason:

Reason associated with the response code.

SIPConferenceGotRemoveParticipantProgress

This notification is sent when a NOTIFY is received indicating the status of the
remove participant operation.

timestamp:

A datetime.datetime object indicating when the notification was sent.
participant:
URI of the participant whose operation is in progress.

code:

SIP response code for progress.

reason:

Reason associated with the response code.

SIP	 SIMPLE	 CLIENT	 SDK 107

 107

Address Resolution
The SIP SIMPLE middleware offers the sipsimple.lookup module which contains an
implementation for doing DNS lookups for SIP proxies, MSRP relays, STUN servers
and XCAP servers. The interface offers both an asynchronous and synchronous
interface. The asynchronous interface is based on notifications, while the
synchronous one on green threads. In order to call the methods in a asynchronous
manner, you just need to call the method and wait for the notification which is sent
on behalf of the DNSLookup instance. The notifications sent by the DNSLookup
object are DNSLookupDidSucceed and DNSLookupDidFail. In order to call the
methods in a synchronous manner, you need to call the wait method on the object
returned by the methods of DNSLookup. This wait method needs to be called from a
green thread and will either return the result of the lookup or raise an exception.

The DNSLookup object uses DNSManager, an object that will use the system
nameservers and it will fallback to Google's nameservers (8.8.8.8 and 8.8.4.4) in
case of failure.

 108

DNS Manager
This object provides DNSLookup with the nameserver list that will be used to
perform DNS lookups. It will probe the system local nameservers and check if they
are able to do proper lookups (by querying sip2sip.info domain). If the local
nameservers are not able to do proper lookups Google nameservers will be used and
another probing operation will be scheduled. Local nameservers are always
preferred.

methods

__init__(self)

Instantiate the DNSManager object (it's a Singleton).

start(self)

Start the DNSManager. It will start the probing process to determine the suitable
nameservers to use.

stop(self)

Stop the DNS resolution probing.

notifications

DNSResolverDidInitialize

This notification is sent when the nameservers to use for probing (and further DNS
lookups) have been set for the first time.

timestamp:

A datetime.datetime object indicating when the notification was sent.

nameservers:

The list of nameservers that was set on the DNS Manager.

DNSNameserversDidChange

This notification is sent when the nameservers to use for probing (and further DNS
lookups) have changed as a result of the probing process.

timestamp:

A datetime.datetime object indicating when the notification was sent.

nameservers:

The list of nameservers that was set on the DNS Manager.

SIP	 SIMPLE	 CLIENT	 SDK 109

 109

DNS Lookup
This object implements DNS lookup support for SIP proxies according to RFC3263
and MSRP relay and STUN server lookup using SRV records. The object initially does
NS record queries in order to determine the authoritative nameservers for the
domain requested; these authoritative nameservers will then be used for NAPTR,
SRV and A record queries. If this fails, the locally configured nameservers are used.
The reason for doing this is that some home routers have broken NAPTR and/or SRV
query support.

methods

__init__(self)

Instantiate a new DNSLookup object.

lookup_service(self, uri, service, timeout=3.0, lifetime=15.0)

Perform an SRV lookup followed by A lookups for MSRP relays or STUN servers
depending on the service parameter. If SRV queries on the uri.host domain fail, an A
lookup is performed on it and the default port for the service is returned. Only the
uri.host attribute is used. The return value is a list of (host, port) tuples.

uri:

A (Frozen)SIPURI from which the host attribute is used for the query domain.

service:

The service to lookup servers for, "msrprelay" or "stun".

timeout:

How many seconds to wait for a response from a nameserver.

lifetime:

How many seconds to wait for a response from all nameservers in total.

lookup_sip_proxy(self, uri, supported_transports, timeout=3.0,
lifetime=15.0)

Performs a RFC3263 compliant DNS lookup for a SIP proxy using the URI which is
considered to point to a host if either the host attribute is an IP address, or the port
is present. Otherwise, it is considered a domain for which NAPTR, SRV and A lookups
are performed. If NAPTR or SRV queries fail, they fallback to using SRV and A
queries. If the transport parameter is present in the URI, this will be used as far as it
is part of the supported transports. If the URI has a sips schema, then only the TLS
transport will be used as far as it doesn't conflict with the supported transports or
the transport parameter. The return value is a list of Route objects containing the IP
address, port and transport to use for routing in the order of preference given by the
supported transports argument.

 110

uri:

A (Frozen)SIPURI from which the host, port, parameters and secure attributes
are used.

supported_transports:

A sublist of ['udp', 'tcp', 'tls'] in the application's order of preference.

timeout:

How many seconds to wait for a response from a nameserver.

lifetime:

How many seconds to wait for a response from all nameservers in total.

lookup_xcap_server(self, uri, timeout=3.0, lifetime=15.0)

Perform a TXT DNS query on xcap.<uri.host> and return all values of the TXT record
which are URIs with a scheme of http or https. Only the uri.host attribute is used.
The return value is a list of strings representing HTTP URIs.

uri:

A (Frozen)SIPURI from which the host attribute is used for the query domain.

timeout:

How many seconds to wait for a response from a nameserver.

lifetime:

How many seconds to wait for a response from all nameservers in total.

notifications

DNSLookupDidSucceed

This notification is sent when one of the lookup methods succeeds in finding a result.

timestamp:

A datetime.datetime object indicating when the notification was sent.

result:

The result of the DNS lookup in the format described in each method.

DNSLookupDidFail

This notification is sent when one of the lookup methods fails in finding a result.

SIP	 SIMPLE	 CLIENT	 SDK 111

 111

timestamp:

A datetime.datetime object indicating when the notification was sent.

error:

A str object describing the error which resulted in the DNS lookup failure.

DNSLookupTrace

This notification is sent several times during a lookup process for each individual DNS
query.

timestamp:

A datetime.datetime object indicating when the notification was sent.

query_type:

The type of the query, "NAPTR", "SRV", "A", "NS" etc.

query_name:

The name which was queried.

answer:

The answer returned by dnspython, or None if an error occurred.

error:

The exception which caused the query to fail, or None if no error occurred.

context:

The name of the method which was called on the DNSLookup object.

service:

The service which was queried for, only available when context is
"lookup_service".

uri:

The uri which was queried for.

nameservers:

The list of nameservers that was used to perform the lookup.

 112

Route
This is a convinience object which contains sufficient information to identify a route
to a SIP proxy. This object is returned by DNSLookup.lookup_sip_proxy and can be
used with the Session or a (Frozen)RouteHeader can be easily constructed from it to
pass to one of the objects in the SIP core handling SIP dialogs/transactions
(Invitation, Subscription, Request, Registration, Message, Publication).

This object has three attributes which can be set in the constructor or after it was
instantiated. They will only be documented as arguments to the constructor.

methods

__init__(self, address, port=None, transport='udp')

Creates the Route object with the specified parameters as attributes. Each of these
attributes can be accessed on the object once instanced.

address:

The IPv4 address that the request in question should be sent to as a string.

port:

The port to send the requests to, represented as an int, or None if the default
port is to be used.

transport:

The transport to use, this can be a string of either "udp", "tcp" or "tls" (case
insensitive).

get_uri(self)

Returns a SIPURI object which contains the adress, port and transport as parameter.
This can be used to easily construct a RouteHeader:

route = Route("1.2.3.4", port=1234, transport="tls")
route_header = RouteHeader(route.get_uri())

SIP	 SIMPLE	 CLIENT	 SDK 113

 113

SIP Accounts
Account Management is implemented in sipsimple/account.py (sipsimple.account
module) and offers support for SIP accounts registered at SIP providers and SIP
bonjour accounts which are discovered using mDNS.

 114

AccountManager
The sipsimple.account.AccountManager is the entity responsible for loading and
keeping track of the existing accounts. It is a singleton and can be instantiated
anywhere, obtaining the same instance. It cannot be used until its start method has
been called.

methods

__init__(self)

The __init__ method allows the AccountManager to be instantiated without passing
any parameters. A reference to the AccountManager can be obtained anywhere
before it is started.

start(self)

This method will load all the existing accounts from the configuration. If the Engine is
running, the accounts will also activate. This method can only be called after the
ConfigurationManager has been started. A SIPAccountManagerDidAddAccount will be
sent for each account loaded. This method is called automatically by the
SIPApplication when it initializes all the components of the middleware.

stop(self)

Calling this method will deactivate all accounts managed by the AccountManager.
This method is called automatically by the SIPApplication when it stops.

has_account(self, id)

This method returns True if an account which has the specifed SIP ID (must be a
string) exists and False otherwise.

get_account(self, id)

Returns the account (either an Account instance or the BonjourAccount instance)
with the specified SIP ID. Will raise a KeyError if such an account does not exist.

get_accounts(self)

Returns a list containing all the managed accounts.

iter_accounts(self)

Returns an iterator through all the managed accounts.

SIP	 SIMPLE	 CLIENT	 SDK 115

 115

find_account(self, contact_uri)

Returns an account with matches the specified contact_uri which must be a
sipsimple.core.SIPURI instance. Only the accounts with the enabled flag set will be
considered. Returns None if such an account does not exist.

notifications

SIPAccountManagerDidAddAccount

This notification is sent when a new account becomes available to the
AccountManager. The notification is also sent when the accounts are loaded from the
configuration.

timestamp:

A datetime.datetime object indicating when the notification was sent.

account:

The account object which was added.

SIPAccountManagerDidRemoveAccount

This notification is sent when an account is deleted using the delete method.

timestamp:

A datetime.datetime object indicating when the notification was sent.

account:

The account object which was deleted.

SIPAccountManagerDidChangeDefaultAccount

This notification is sent when the default account changes.

timestamp:

A datetime.datetime object indicating when the notification was sent.

old_account:

This is the account object which used to be the default account.

account:

This is the account object which is the new default account.

 116

Account
The sipsimple.account.Account objects represent the SIP accounts which are
registered at SIP providers. It has a dual purpose: it acts as both a container for
account-related settings and as a complex object which can be used to interact with
various per-account functions, such as presence, registration etc. This page
documents the latter case, while the former is explained in the Configuration API.

There is exactly one instance of Account per SIP account used and it is uniquely
identifiable by its SIP ID, in the form user@domain. It is a singleton, in the sense
that instantiating Account using an already used SIP ID will return the same object.
However, this is not the recommended way of accessing accounts, as this can lead to
creation of new ones; the recommended way is by using the AccountManager. The
next sections will use a lowercase, monospaced account to represent an instance of
Account.

states

The Account objects have a setting flag called enabled which, if set to False will
deactivate it: none of the internal functions will work in this case; in addition, the
application using the middleware should not do anything with a disabled account.
After changing it's value, the save() method needs to be called, as the flag is a
setting and will not be used until this method is called:

account.enabled = True
account.save()

The Account objects will activate automatically when they are loaded/created if the
enabled flag is set to True and the sipsimple.engine.Engine is running; if it is not
running, the accounts will activate after the engine starts.

In order to create a new account, just create a new instance of Account with an id
which doesn't belong to any other account.

The other functions of Account which run automatically have other enabled flags as
well. They will only be activated when both the global enabled flag is set and the
function-specific one. These are:

Account.registration.enabled

This flag controls the automatic registration of the account. The notifications
SIPAccountRegistrationDidSucceed, SIPAccountRegistrationDidFail and
SIPAccountRegistrationDidEnd are used to inform the status of this registration.

Account.presence.enabled

This flag controls the automatic subscription to buddies for the presence event and
the publication of data in this event.

Account.dialog_event.enabled

SIP	 SIMPLE	 CLIENT	 SDK 117

 117

This flag controls the automatic subscription to buddies for the dialog-info event and
the publication of data in this event.

Account.message_summary.enabled

This flag controls the automatic subscription to the message-summary event in order
to find out about voicemail messages.

The save() method needs to be called after changing these flags in order for them to
take effect. The methods available on Account objects are inherited from
SettingsObject.

attributes

The following attributes can be used on an Account object and need to be considered
read-only.

id

This attribute is of type sipsimple.configuration.datatypes.SIPAddress (a subclass of
str) and contains the SIP id of the account. It can be used as a normal string in the
form user@domain, but it also allows access to the components via the attributes
username and domain.

• account.id # 'alice@example.com'
• account.id.username # 'alice'
• account.id.domain # 'example.com'

contact

This attribute can be used to construct the Contact URI for SIP requests sent on
behalf of this account. It's type is sipsimple.account.ContactURIFactory. It can be
indexed by a string representing a transport ('udp', 'tcp', 'tls') or a
sipsimple.util.Route object which will return a sipsimple.core.SIPURI object with the
appropriate IP, port and transport. The username part is a randomly generated 8
character string consisting of lowercase letters; but it can be chosen by passing it to
init when building the ContactURIFactory object.

• account.contact # 'ContactURIFactory(username=hnfkybrt)'
• account.contact.username # 'hnfkybrt'
• account.contact['udp'] # <SIPURI "sip:hnfkybrt@10.0.0.1:53024">
• account.contact['tls'] # <SIPURI

"sip:hnfkybrt@10.0.0.1:54478;transport=tls">credentials

This attribute is of type sipsimple.core.Credentials which is built from the
id.username attribute and the password setting of the Account. Whenever this
setting is changed, this attribute is updated.

account.credentials # <Credentials for 'alice'>

uri

 118

This attribute is of type sipsimple.core.SIPURI which can be used to form a
FromHeader associated with this account. It contains the SIP ID of the account.

account.uri # <SIPURI "sip:alice@example.com">

notifications

CFGSettingsObjectDidChange

This notification is sent when the save() method is called on the account after some
of the settings were changed. As the notification belongs to the SettingsObject class,
it is exaplained in detail in SettingsObject Notifications.

SIPAccountDidActivate

This notification is sent when the Account activates. This can happen when the
Account is loaded if it's enabled flag is set and the Engine is running, and at any later
time when the status of the Engine changes or the enabled flag is modified.

timestamp:

A datetime.datetime object indicating when the notification was sent.

SIPAccountDidDeactivate

This notification is sent when the Account deactivates. This can happend when the
Engine is stopped or when the enabled flag of the account is set to False.

timestamp:

A datetime.datetime object indicating when the notification was sent.

SIPAccountWillRegister

This notification is sent when the account is about to register for the first time.
 timestamp: A datetime.datetime object indicating when the notification was sent.

SIPAccountRegistrationWillRefresh

This notification is sent when a registration is about to be refreshed. timestamp: A
datetime.datetime object indicating when the notification was sent.

SIPAccountRegistrationDidSucceed

This notification is sent when a REGISTER request sent for the account succeeds (it is
also sent for each refresh of the registration). The data contained in this notification
is:

SIP	 SIMPLE	 CLIENT	 SDK 119

 119

timestamp:

A datetime.datetime object indicating when the notification was sent.

contact_header:

The Contact header which was registered.

contact_header_list:

A list containing all the contacts registered for this SIP account.

expires:

The amount in seconds in which this registration will expire.

registrar:

The sipsimple.util.Route object which was used.

SIPAccountRegistrationDidFail

This notification is sent when a REGISTER request sent for the account fails. It can
fail either because a negative response was returned or because PJSIP considered
the request failed (e.g. on timeout). The data contained in this notification is:

timestamp:

A datetime.datetime object indicating when the notification was sent.

error:

The reason for the failure of the REGISTER request.

timeout:

The amount in seconds as a float after which the registration will be tried again.

SIPAccountRegistrationDidEnd

This notification is sent when a registration is ended (the account is unregistered).
The data contained in this notification is:

timestamp:

A datetime.datetime object indicating when the notification was sent.

registration:

The sipsimple.core.Registration object which ended.

SIPAccountRegistrationDidNotEnd

This notification is sent when a registration fails to end (the account is not
unregistered). The data contained in this notification is:

 120

timestamp:

A datetime.datetime object indicating when the notification was sent.

code:

The SIP status code received.

reason:

The SIP status reason received.

registration:

The sipsimple.core.Registration object which ended.

SIPAccountRegistrationGotAnswer

This notification is sent whenever a response is received to a sent REGISTER request
for this account. The data contained in this notification is:

timestamp:

A datetime.datetime object indicating when the notification was sent.

code:

The SIP status code received.

reason:

The SIP status reason received.

registration:

The sipsimple.core.Registration object which was used.

registrar:

The sipsimple.util.Route object which was used.

SIPAccountMWIDidGetSummary

This notification is sent when a NOTIFY is received with a message-summary
payload. The data contained in this notification is:

timestamp:

A datetime.datetime object indicating when the notification was sent.

message_summary:

A sipsimple.payloads.messagesummary.MessageSummary object with the
parsed payload from the NOTIFY request.

SIP	 SIMPLE	 CLIENT	 SDK 121

 121

BonjourAccount
The sipsimple.account.BonjourAccount represents the SIP account used for P2P
mode; it does not interact with any server. The class is a singleton, as there can only
be one such account on a system. Similar to the Account, it is used both as a
complex object, which implements the functions for bonjour mode, as well as a
container for the related settings.

states

The BonjourAccount has an enabled flag which controls whether this account will be
used or not. If it is set to False, none of the internal functions will be activated and,
in addition, the account should not be used by the application. The bonjour account
can only activated if the Engine is running; once it is started, if the enabled flag is
set, the account will activate. When the BonjourAccount is activated, it will broadcast
the contact address on the LAN and discover its neighbours sending notifications as
this happens.

attributes

The following attributes can be used on a BonjourAccount object and need to be
considered read-only.

id

This attribute is of type sipsimple.configuration.datatypes.SIPAddress (a subclass of
str) and contains the SIP id of the account, which is 'bonjour@local'. It can be used
as a normal string, but it also allows access to the components via the attributes
username and domain.

• bonjour_account.id # 'bonjour@local'
• bonjour_account.id.username # 'bonjour'
• bonjour_account.id.domain # 'local'

contact

This attribute can be used to construct the Contact URI for SIP requests sent on
behalf of this account. It's type is sipsimple.account.ContactURIFactory. It can be
indexed by a string representing a transport ('udp', 'tcp', 'tls') or a
sipsimple.util.Route object which will return a sipsimple.core.SIPURI object with the
appropriate IP, port and transport. The username part is a randomly generated 8
character string consisting of lowercase letters; but it can be chosen by passing it to
init when building the ContactURIFactory object.

• bonjour_account.contact # 'ContactURIFactory(username=lxzvgack)'
• bonjour_account.contact.username # 'lxzvgack'
• bonjour_account.contact['udp'] # <SIPURI "sip:lxzvgack@10.0.0.1:53024">
• bonjour_account.contact['tls'] # <SIPURI

"sip:lxzvgack@10.0.0.1:54478;transport=tls">credentials

 122

This attribute is of type sipsimple.core.Credentials object which is built from the
contact.username attribute; the password is set to the empty string.

• bonjour_account.credentials # <Credentials for 'alice'>

uri

This attribute is of type sipsimple.core.SIPURI which can be used to form a
FromHeader associated with this account. It contains the contact address of the
bonjour account:

• bonjour_account.uri # <SIPURI "sip:lxzvgack@10.0.0.1">

notifications

BonjourAccountDidAddNeighbour

This notification is sent when a new Bonjour neighbour is discovered.

service_description:

BonjourServiceDescription object uniquely identifying this neighbour in the
mDNS library.

display_name:

The name of the neighbour as it is published.

host:

The hostname of the machine from which the Bonjour neighbour registered its
contact address.

uri:

The contact URI of the Bonjour neighbour, as a FrozenSIPURI object.

timestamp:

A datetime.datetime object indicating when the notification was sent.

BonjourAccountDidUpdateNeighbour

This notification is sent when an existing Bonjour neighbour has updates its
published data.

SIP	 SIMPLE	 CLIENT	 SDK 123

 123

service_description:

BonjourServiceDescription object uniquely identifying this neighbour in the
mDNS library.

display_name:

The name of the neighbour as it is published.

host:

The hostname of the machine from which the Bonjour neighbour registered its
contact address.

uri:

The contact URI of the Bonjour neighbour, as a FrozenSIPURI object.

timestamp:

A datetime.datetime object indicating when the notification was sent.

BonjourAccountDidRemoveNeighbour

This notification is sent when a Bonjour neighbour unregisters.

service_description:

The BonjourServiceDescription object, which uniquely identifies a neighbour,
that got unregistered.

timestamp:

A datetime.datetime object indicating when the notification was sent.

BonjourAccountDiscoveryDidFail

This notification is sent once per transport when the Bonjour account has failed to
perform the discovery process for the indicated transport.

reason:

String defining the reason of the failure.
transport:

String specifying the transport for which the discovery failed.

timestamp:

A datetime.datetime object indicating when the notification was sent.

BonjourAccountDiscoveryFailure

This notification is sent once per transport when the Bonjour account has
encountered a problem while browsing the list of neighbours for the indicated
transport.

 124

error:

String defining the error of the failure.

transport:

String specifying the transport for which the neighbour resoution failed.

timestamp:

A datetime.datetime object indicating when the notification was sent.

BonjourAccountRegistrationDidEnd

This notification is sent once per transport when the Bonjour account unregisters its
contact address for the indicated transport using mDNS.

transport:

String specifying the transport for which the registration ended.

timestamp:

A datetime.datetime object indicating when the notification was sent.

BonjourAccountRegistrationDidFail

This notification is sent once per transport when the Bonjour account fails to register
its contact address for the indicated transport using mDNS.

reason:

A human readable error message.

transport:

String specifying the transport for which the registration failed.

timestamp:

A datetime.datetime object indicating when the notification was sent.

BonjourAccountRegistrationUpdateDidFail

This notification is sent once per transport when the Bonjour account fails to update
its data for the indicated transport using mDNS.

reason:

A human readable error message.

transport:

String specifying the transport for which the registration update failed.

timestamp:

A datetime.datetime object indicating when the notification was sent.

BonjourAccountRegistrationDidSucceed

SIP	 SIMPLE	 CLIENT	 SDK 125

 125

This notification is sent once per transport when the Bonjour account successfully
registers its contact address for the indicated transport using mDNS.

name:

The contact address registered.

transport:

String specifying the transport for which the registration succeeded.

timestamp:

A datetime.datetime object indicating when the notification was sent.

BonjourAccountWillInitateDiscovery

This notification is sent when the Bonjour account is about to start the discovery
process for the indicated transport.

transport:

String specifying the transport for which the discovery will be started.

timestamp:

A datetime.datetime object indicating when the notification was sent.

BonjourAccountWillRegister

This notification is sent just before the Bonjour account starts the registering process
for the indicated transport.

transport:

String specifying the transport for which the registration will be started.

timestamp:

A datetime.datetime object indicating when the notification was sent.

CFGSettingsObjectDidChange

This notification is sent when the save() method is called on the account after some
of the settings were changed. As the notification belongs to the SettingsObject class,
it is explained in detail in SettingsObject Notifications.

timestamp:

A datetime.datetime object indicating when the notification was sent.

SIPAccountWillActivate

This notification is sent when the Account is about to be activated, but before
actually performing any activation task. See SIPAccountDidActivate for more detail.

 126

timestamp:

A datetime.datetime object indicating when the notification was sent.

SIPAccountDidActivate

This notification is sent when the BonjourAccount activates. This can happen when
the BonjourAccount is loaded if it's enabled flag is set and the Engine is running, and
at any later time when the status of the Engine changes or the enabled flag is
modified.

timestamp:

A datetime.datetime object indicating when the notification was sent.

SIPAccountWillDeactivate

This notification is sent when the Account is about to be deactivated, but before
performing any deactivation task. See SIPAccountDidDeactivate for more detail.

timestamp:

A datetime.datetime object indicating when the notification was sent.

SIPAccountDidDeactivate

This notification is sent when the BonjourAccount deactivates. This can happend
when the Engine is stopped or when the enabled flag of the account is set to False.

timestamp:

A datetime.datetime object indicating when the notification was sent.

SIP	 SIMPLE	 CLIENT	 SDK 127

 127

Audio API
The high-level audio API hides the complexity of using the low-level PJMEDIA
interface. This is implemented in the sipsimple.audio module and contains the
following components:

IaudioPort

an interface describing an object capable of producing and/or consuming audio
data.

AudioDevice

an object conforming to the IAudioPort interface which describes a physical
audio device.

AudioBridge

a collection of objects conforming to IAudioPort which connects all of them in a
full mesh.

WavePlayer

an object conforming to the IAudioPort interface which can playback the audio
data from a .wav file.

WaveRecorder

an object conforming to the IAudioPort interface which can record audio data to
a .wav file.

 128

IAudioPort
The IAudioPort interface describes an object capable of producing and/or consuming
audio data. This can be a dynamic object, which changes its role during its lifetime
and notifies such changes using a notification, which is part of the interface.

attributes

mixer

The AudioMixer this audio object is connected to. Only audio objects connected to
the same mixer will be able to send audio data from one to another.

consumer_slot

An integer representing the slot (see AudioMixer) which this object uses to consume
audio data, or None if this object is not a consumer.

producer_slot

An integer representing the slot (see AudioMixer) which this object uses to produce
audio data, or None if this object is not a producer.

notifications

AudioPortDidChangeSlots

This notification needs to be sent by implementations of this interface when the slots
it has change, so as to let the AudioBridges it is part of know that reconnections
need to be made.

consumer_slot_changed:

A bool indicating whether the consumer slot was changed.

producer_slot_changed:

A bool indicating whether the producer slot was changed.

old_consumer_slot:

The old slot for consuming audio data. Only required if consumer_slot_changed is
True.

new_consumer_slot:

SIP	 SIMPLE	 CLIENT	 SDK 129

 129

The new slot for consuming audio data. Only required if consumer_slot_changed is
True.

old_producer_slot:

The old slot for producing audio data. Only required if producer_slot_changed is
True.

new_producer_slot:

The new slot for producing audio data. Only required if producer_slot_changed is
True.

 130

AudioDevice
The AudioDevice represents the physical audio device which is part of a AudioMixer,
implementing the IAudioPort interface. As such, it can be uniquely identified by the
mixer it represents.

methods

__init__(self, mixer, input_muted=False, output_muted=False):

Instantiates a new AudioDevice which represents the physical device associated with
the specified AudioMixer. mixer: The AudioMixer whose physical device this object
represents. input_muted: A boolean which indicates whether this object should act
as a producer of audio data. output_muted: A boolean which indicates whether this
object should act as a consumer of audio data.

attributes

input_muted

A writable property which controls whether this object should act as a producer of
audio data. An AudioPortDidChange slots notification is sent when this attribute is
changed to force connections to be reconsidered within the AudioBridges this object
is part of.

output_muted

A writable property which controls whether this object should act as a consumer of
audio data. An AudioPortDidChange slots notification is sent when this attribute is
changed to force connections to be reconsidered within the AudioBridges this object
is part of.

AudioBridge

The AudioBridge is the basic component which is able to connect IAudioPort
implementations. It acts as a container which connects as the producers to all the
consumers which are part of it. An object which is both a producer and a consumer
of audio data will not be connected to itself. Being an implementation of IAudioPort
itself, an AudioBridge can be part of another AudioBridge. The AudioBridge does not
keep strong references to the ports it contains and once the port's reference count
reaches 0, it is automatically removed from the AudioBridge.

Note: although this is not enforced, there should never be any cycles when
connecting AudioBridges.

methods

__init__(self, mixer)

SIP	 SIMPLE	 CLIENT	 SDK 131

 131

Instantiate a new AudioBridge which uses the specified AudioMixer for mixing.

add(self, port)

Add an implementation of IAudioPort to this AudioBridge. This will connect the new
port to all the existing ports of the bridge. A port cannot be added more than once to
an AudioBridge; thus, this object acts like a set.

remove(self, port)

Remove a port from this AudioBridge. The port must have previously been added to
the AudioBridge, otherwise a ValueError is raised.

 132

WavePlayer
A WavePlayer is an implementation of IAudioPort which is capable of producing audio
data read from a .wav file. This object is completely reusable, as it can be started
and stopped any number of times.

methods

__init__(self, mixer, filename, volume=100, loop_count=1,
pause_time=0, initial_play=True)

Instantiate a new WavePlayer which is capable of playing a .wav file repeatedly. All
the parameters are available as attributes of the object, but should not be changed
once the object has been started.

mixer:

The AudioMixer this object is connected to.

filename:

The full path to the .wav file from which audio data is to be read.

volume:

The volume at which the file should be played.

loop_count:

The number of times the file should be played, or 0 for infinity.

pause_time:

How many seconds to wait between successive plays of the file.

initial_play:

Whether or not the file to play once the WavePlayer is started, or to wait
pause_time seconds before the first play.

start(self)

Start playing the .wav file.

stop(self)

Stop playing the .wav file immediately.

play(self)

Play the .wav file. This method is an alternative to the start/stop methods, it runs on
a waitable green thread. One may call play().wait() in order to green-block waiting
for the file playback to end.

SIP	 SIMPLE	 CLIENT	 SDK 133

 133

attributes

is_active

A boolean indicating whether or not this WavePlayer is currently playing.

notifications

WavePlayerDidStart

This notification is sent when the WavePlayer starts playing the file the first time
after the start() method has been called.

timestamp:

A datetime.datetime object indicating when the notification was sent.

WavePlayerDidEnd

This notification is sent when the WavePlayer is done playing either as a result of
playing the number of times it was told to, or because the stop() method has been
called.

timestamp:

A datetime.datetime object indicating when the notification was sent.

WavePlayerDidFail

This notification is sent when the WavePlayer is not capable of playing the .wav file.

timestamp:

A datetime.datetime object indicating when the notification was sent.

error:

The exception raised by the WaveFile which identifies the cause for not being
able to play the .wav file.

 134

WaveRecorder
A WaveRecorder is an implementation of IAudioPort is is capable of consuming audio
data and writing it to a .wav file. Just like WavePlayer, this object is reusable: once
stopped it can be started again, but if the filename attribute is not changed, the
previously written file will be overwritten.

methods

__init__(self, mixer, filename)

Instantiate a new WaveRecorder.

mixer:

The AudioMixer this WaveRecorder is connected to.

filename:

The full path to the .wav file where this object should write the audio data. The
file must be writable. The directories up to the file will be created if possible
when the start() method is called.

start(self)

Start consuming audio data and writing it to the .wav file. If this object is not part of
an AudioBridge, not audio data will be written.

stop(self)

Stop consuming audio data and close the .wav file.

attributes

is_active

A boolean indicating whether or not this WaveRecorder is currently recording audio
data.

SIP	 SIMPLE	 CLIENT	 SDK 135

 135

Conference
Conference support is implemented in the sipsimple.conference module. Currently,
only audio conferencing is supported.

 136

AudioConference
This class contains the basic implementation for audio conferencing. It acts as a
container for AudioStream objects which it will connect in a full mesh, such that all
participants can hear all other participants.

methods

__init__(self)

Instantiates a new AudioConference which is ready to contain AudioStream objects.

add(self, stream)

Add the specified AudioStream object to the conference.

remove(self, stream)

Removes the specified AudioStream object from the conference. Raises a ValueError
if the stream is not part of the conference.

hold(self)

Puts the conference "on hold". This means that the audio device will be disconnected
from the conference: all the participants will be able to continue the conference, but
the local party will no longer contribute any audio data and will not receive any audio
data using the input and output devices respectively. This does not affect the hold
state of the streams in any way.

unhold(self)

Removes the conference "from hold". This means that the audio device will be
reconnected to the conference: all the participants will start to hear the local party
and the local party will start to hear all the participants. This does not affect the hold
state of the streams in any way.

attributes

bridge

An AudioBridge which this conference uses to connect all audio streams. It can be
used by the application to play a wav file using a WavePlayer to all the participants
or record the whole conference using a WaveRecorder.

on_hold

A boolean indicating whether or not the conference is "on hold".

SIP	 SIMPLE	 CLIENT	 SDK 137

 137

streams

The list of streams which are part of this conference. The application must not
manipulate this list in any way.

 138

XCAP API
The sipsimple.xcap module offers a high level API for managing XCAP resources to
other parts of the middleware or to the applications built on top of the middleware.
The XCAP resources which can be managed by means of this module are:

• contact list, by means of the resource-lists and rls-services XCAP
applications

• presence policies, by means of the org.openmobilealliance.pres-rules
or pres-rules XCAP applications

• dialoginfo policies, by means of the org.openxcap.dialog-rules XCAP
application

• status icon, by means of the org.openmobilealliance.pres-content XCAP
application

• offline status, by means of the pidf-manipulation XCAP application

The module can work with both OMA or IETF-compliant XCAP servers, preferring the
OMA variants of the specification if the server supports them. Not all applications
need to be available on the XCAP server, although it is obvious that only those that
are will be managed. The central entity for XCAP resource management is the
XCAPManager, whose API relies on a series of objects describing the resources
stored on the XCAP server.

SIP	 SIMPLE	 CLIENT	 SDK 139

 139

Contact
Implemented in sipsimple/xcap/__init__.py

A Contact is a URI with additional information stored about it, central to the XCAP
contact list management. Information about a contact is stored in the resource-
lists, rls-services, org.openmobilealliance.pres-rules or pres-rules, and
org.openxcap.dialog-rules applications. The URI associated with the contact is
considered a unique identifier. Information found in various places about the same
URI is aggregated into a single Contact instance. More information about the contact
is described within the attributes section.

attributes

name

A human-readable name which can be associated with the contact. This is stored
using the display-name standard resource-lists element.

uri

The uniquely identifying URI.

group

A human-readable group name which can be used to group contacts together. If this
is not None, the contact will be reachable from the oma_buddylist list within the
resource-lists document, as defined by OMA. The group of a contact is the first
display-name of an ancestor list which contains the contact information.

subscribe_to_presence

A boolean flag which indicates whether a subscription to the presence event is
desired. If this is True, the contact's URI is referenced from a rls-services service
which defines presence as one of the packages. Thus, a contact with this flag set is
guaranteed to be referenced by an RLS service.

subscribe_to_dialoginfo

A boolean flag which indicates whether a subscription to the dialog event is desired.
If this is True, the contact's URI is referenced from a rls-services service which
defines dialog as one of the packages. Thus, a contact with this flag set is
guaranteed to be refereneced by an RLS service.

presence_policies

 140

Either None or a list of PresencePolicy objects which represent
org.openmobilealliance.pres-rules or pres-rules rules which reference this
contact's URI either directly (through an identity condition) or indirectly through
resource lists (using the OMA external-list common policy extension).

dialoginfo_policies

Either None or a list of DialoginfoPolicy objects which represent
org.openxcap.dialog-rules rules which reference this contact's URI through an
identity condition.

attributes

A dictionary containing additional name, value pairs which the middleware or the
application can use to store any information regarding this contact. This is stored
through a proprietary AG-Projects extension to resource-lists.

methods

__init__(self, name, uri, group, **attributes)

Initializes a new Contact instance. The policies are by default set to None and the
subscribe_to_presence and subscribe_to_dialoginfo flags to True.

SIP	 SIMPLE	 CLIENT	 SDK 141

 141

Service
Implemented in sipsimple/xcap/__init__.py

A Service represents a URI managed by a Resource List Server (RLS). Subscriptions
to this URI will be handled by the RLS.

attributes

uri

The URI which can be used to access a service provided by the RLS.

packages

A list of strings containing the SIP events which can be subscribed for to the URI.

entries

A list of URIs which represent the expanded list of URIs referenced by the service. A
subscription to the service's URI for one of packages will result in the RLS
subscribing to these URIs.

methods

__init__(self, uri, packages, entries=None)

Initializes a new Service instance.

 142

Policy
Implemented in sipsimple/xcap/__init__.py

Policy is the base class for PresencePolicy and DialoginfoPolicy. It describes
the attributes common to both.

attributes

id

A string containing the unique identifier of this specific policy. While it should not be
considered human readable, OMA does assign specific meanings to some IDs.

action

A string having one of the values "allow", "confirm", "polite-block" or "block".

validity

Either None, or a list of datetime instance 2-tuples representing the intervals when
this policy applies. Example valid validity list which represents two intervals, each of
two hours:

 from datetime import datetime, timedelta
 now = datetime.now()
 one_hour = timedelta(seconds=3600)
 one_day = timedelta(days=1)
 validity = [(now-one_hour, now+one_hour), (now+one_day-one_hour,
now+one_day+one_hour)]

sphere

Either None or a string representing the sphere of presentity when this policy applies.

multi_identity_conditions

Either None or a list of CatchAllCondition or DomainCondition objects as defined
below. This is used to apply this policy to multiple users.

methods

__init__(self, id, action, name=None, validity=None, sphere=None,
multi_identity_conditions=None)

Initializes a new Policy instance.

SIP	 SIMPLE	 CLIENT	 SDK 143

 143

check_validity(self, timestamp, sphere=Any)

Returns a boolean indicating whether this policy applies at the specific moment given
by timestamp (which must be a datetime instance) in the context of the specific
sphere.

 144

CatchAllCondition
Implemented in sipsimple/xcap/__init__.py

CatchAllCondition represents a condition which matches any user, but which can
have some exceptions.

attributes

exceptions

A list containing DomainException or UserException objects to define when this
condition does not apply.

methods

__init__(self, exceptions=None)

Initializes a new CatchAllCondition instance.

SIP	 SIMPLE	 CLIENT	 SDK 145

 145

DomainCondition

Implemented in sipsimple/xcap/__init__.py

DomainCondition represents a condition which matches any user within a specified
domain, but which can have some exceptions.

attributes

domain

A string containing the domain for which this condition applies.

exceptions

A list containing UserEception objects to define when this condition does not apply.

methods

__init__(self, domain, exceptions=None)

Initializes a new DomainCondition instance.

 146

DomainException
Implemented in sipsimple/xcap/__init__.py

DomainException is used as an exception for a CatchAllCondition which excludes
all users within a specified domain.

attributes

domain

A string containing the domain which is to be excluded from the CatchAllCondition
containing this object as an exception.

methods

__init__(self, domain)

Initializes a new DomainException instance.

SIP	 SIMPLE	 CLIENT	 SDK 147

 147

UserException
Implemented in sipsimple/xcap/__init__.py

UserException is used as an exception for either a CatchAllCondition or a
DomainCondition and excludes a user identified by an URI.

attributes

uri

A string containing the URI which is to be excluded from the CatchAllCondition or
DomainCondition containing this object as an exception.

methods

__init__(self, uri)

Initializes a new UserException instance.

 148

PresencePolicy
Implemented in sipsimple/xcap/__init__.py

A PresencePolicy represents either a org.openmobilealliance.pres-rules or
pres-rules rule. It subclasses Policy and inherits its attributes, but defines
additional attributes corresponding to the transformations which can be specified in a
rule.

attributes

All of the following attributes only make sense for a policy having a "allow" action.

provide_devices

Either sipsimple.util.All, or a list of Class, OccurenceID or DeviceID objects as
defined below.

provide_persons

Either sipsimple.util.All, or a list of Class or OccurenceID objects as defined
below.

provide_services

Either sipsimple.util.All, or a list of Class, OccurenceID, ServiceURI or
ServiceURIScheme objects as defined below.

provide_activities

Either None (if the transformation is not be specified) or a boolean.

provide_class

Either None (if the transformation is not be specified) or a boolean.

provide_device_id

Either None (if the transformation is not be specified) or a boolean.

provide_mood

Either None (if the transformation is not be specified) or a boolean.

provide_place_is

SIP	 SIMPLE	 CLIENT	 SDK 149

 149

Either None (if the transformation is not be specified) or a boolean.

provide_place_type

Either None (if the transformation is not be specified) or a boolean.

provide_privacy

Either None (if the transformation is not be specified) or a boolean.

provide_relationship

Either None (if the transformation is not be specified) or a boolean.

provide_status_icon

Either None (if the transformation is not be specified) or a boolean.

provide_sphere

Either None (if the transformation is not be specified) or a boolean.

provide_time_offset

Either None (if the transformation is not be specified) or a boolean.

provide_user_input

Either None (if the transformation is not be specified) or one of the strings "false",
"bare", "thresholds", "full".

provide_unknown_attributes

Either None (if the transformation is not be specified) or a boolean. The name of the
attribute is not a typo, although it maps to the transformation named provide-
unknown-attribute (singular form).

provide_all_attributes

Either None (if the transformation is not be specified) or a boolean.

methods

__init__(self, id, action, name=None, validity=None, sphere=None,
multi_identity_conditions=None)

 150

Initializes a new PresencePolicy instance. The provide_devices, provide_persons and
provide_services are initialized to sipsimple.util.All, provide_all_attributes to True
and the rest to None.

SIP	 SIMPLE	 CLIENT	 SDK 151

 151

DialoginfoPolicy
Implemented in sipsimple/xcap/__init__.py

A DialoginfoPolicy represents a org.openxcap.dialog-rules rule. It subclasses
Policy and inherits all of its attributes. It does not add any other attributes or
methods and thus has an identical API.

 152

Icon
Implemented in sipsimple/xcap/__init__.py

An Icon instance represents a status icon stored using the
org.openmobilealliance.pres-content application.

attributes

data

The binary data of the image, as a string.

mime_type

The MIME type of the image, one of image/jpeg, image/gif or image/png.

description

An optional description of the icon.

location

An HTTP(S) URI which can be used by other users to download the status icon of the
local user. If the XCAP server returns the proprietary X-AGP-Alternative-Location
header in its GET and PUT responses, that is used otherwise the XCAP URI of the
icon is used.

methods

__init__(self, data, mime_type, description=None, location=None)

Initializes a new Icon instance.

SIP	 SIMPLE	 CLIENT	 SDK 153

 153

OfflineStatus
Implemented in sipsimple/xcap/__init__.py

An OfflineStatus instance represents data stored using the pidf-manipulation
application.

attributes

activity

A string representing an activity within a person element.

note

A string stored as a note within a person element.

methods

__init__(self, activity=None, note=Note)

Initializes a new OfflineStatus instance.

 154

XCAPManager
Implemented in sipsimple/xcap/__init__.py

The XCAPManager is the central entity used to manage resource via the XCAP
protocol. It uses a storage factory provided by SIPApplication through the Storage
API. It has state machine as described in the following diagram:

The load method needs to be called just once in order to load the data from the
cache. Once this is done, the start and stop methods can be called as needed.
Initially in the stopped state, the start method will result in a transition to the
initializing state. While in the initializing state, the XCAP manager will try to connect
to the XCAP server and retrieve the capabilities (xcap-caps application). It will then
initiate a SUBSCRIBE for the xcap-diff event (if configured) and transition to the
fetching state. In the fetching state, it will try retrieve all the documents from the
XCAP server, also specifying the ETag of the last known version. If none of the
documents changed and this is not the first fetch, it transitions to the insync state.
Otherwise, it inserts a normalize operation at the beginning of the journal (described
below) and transitions to the updating state. In the updating state, it applies the
operations from the journal which were not applied yet on the currently known
documents and tries to push the documents, specifying the Etag of the last known
version. If an operation fails due to a document having been modified, it marks all
the operations in the journal as not being applied and transitions to the fetching
state; if any other error occurs, the update is retried periodically. If the update
succeeds, data is extracted from the documents and the XCAPManagerDidReloadData
notification is sent. The XCAPManager then transitions to the insync state. A call to
the stop method will result in a transition to the stopping state, termination of any
existing SUBSCRIBE dialog and a transition to the stopped state.

SIP	 SIMPLE	 CLIENT	 SDK 155

 155

Modifications to the settings which control the XCAPManager can result in either a
transition to the initializing state or the termination of any previous SUBSCRIBE
dialog and creation of a new one.

The subscription to the xcap-diff event allows the XCAPManager to be notified
when the documents it manages are modified remotely. If the subscription fails, a
fetch of all the documents is tried and the subscription is retried in some time. This
allows the XCAPManager to reload the documents when they are modified remotely
even if xcap-diff event is not supported by the provider. If subscription for xcap-
diff event fails, a fetch of all the documents will be tried every 2 minutes.

The XCAPManager keeps the documents as they are stored on the XCAP server along
with their ETags in an on-disk cache. All operations are made using the conditional
If-Match and If-None-Match headers such that remote modifications the
XCAPManager does not know about are not overwritten and bandwidth and
processing power are not wasted by GET operations when a document is not
modified.

Operations which the XCAPManager can be asked to apply to modify the documents
are kept in a journal. This journal is saved to disk, such that operations which cannot
be applied when requested due to server problems or lack of connectivity are retried
even after application restarts. In addition, the high-level defined operations and the
journal allow the modifications to be applied even if the document stored on the
XCAP server are modified. Put differently, operations do depend on a specific version
of the documents and the XCAPManager will try to apply them irrespective of the
format of the document.

configuration

Account.id, Account.auth.username, Account.auth.password

These are used both for the xcap-diff subscription and the XCAP server connection.

Account.sip.subscribe_interval

This controls the Expires header used for the subscription, although a 423 response
from the server can result in a larger Expires value being used.

Account.xcap.xcap_root

This specifies the XCAP root used for contacting the XCAP server and managing the
resources. If this setting is None, a TXT DNS query is made for the xcap subdomain
of the SIP account's domain. The result is interpreted as being an XCAP root.
Example record for account alice@example.org:

 xcap.example.org. IN TXT "https://xcap.example.org/xcap-root"

SIPSimpleSettings.sip.transport_list

This controls the transports which can be used for the subscription.

 156

methods

__init__(self, account)

Initializes an XCAPManager for the specified account.

load(self)

Allows the XCAPManager to the load its internal data from cache.

start(self)

Starts the XCAPManager. This will result in the subscription being started, the XCAP
server being contacted and any operations in the journal being applied. This method
must be called in a green thread.

stop(self)

Stops the XCAPManager from performing any tasks. Waits until the xcap-diff
subscription, if any, is terminated. This method must be called in a green thread.

start_transaction(self)

This allows multiple operations to be queued and not applied immediately. All
operations queued after a call to this method will not be applied until the
commit_transaction method is called. This does not have the same meaning as a
relational database transaction, since there is no rollback operation.

commit_transaction(self)

Applies the modifications queued after a call to start_transaction. This method
needs to be called the exact same number of times the start_transaction method
was called. Does not have any effect if start_transaction was not previously
called.

The following methods results in XCAP operations being queued on the journal:

add_group(self, group)

Add a contact group with the specified name.

rename_group(self, old_name, new_name)

Change the name of the contact group old_name to new_name. If such a contact
group does not exist, the operation does not do anything.

remove_group(self, group)

SIP	 SIMPLE	 CLIENT	 SDK 157

 157

Remove the contact group (and any contacts contained in it) with the specified
name. If such a contact group does not exist, the operation does not do anything.

add_contact(self, contact)

Adds a new contact, described by a Contact object. If the contact with the same URI
and a not-None group already exists, the operation does not do anything. Otherwise,
the contact is added and any reference to the contact's URI is overwritten. Requests
to add a contact to some OMA reserved presence policies (wp_prs_unlisted,
wp_prs_allow_unlisted, wp_prs_block_anonymous, wp_prs_allow_own) is ignored.

update_contact(self, contact, **attributes)

Modifies a contact's properties. The keywords can be any of the Contact attributes,
with the same meaning. The URI of the contact to be modified is taken from the first
argument. If such a URI does not exist, it is added. Requests to add a contact to
some OMA reserved presence policies (wp_prs_unlisted, wp_prs_allow_unlisted,
wp_prs_block_anonymous, wp_prs_allow_own) is ignored. The URI of a contact can
be changed by specified the keyword argument uri with the new value.

remove_contact(self, contact)

Removes any reference to the contact's URI from all documents. This also means
that the operation will make sure there are no policies which match the contact's
URI.

add_presence_policy(self, policy)

Adds a new presence policy, described by a PresencePolicy object. If the id is
specified and a policy with the same id exists, the operation does not do anything.
Otherwise, if the id is not specified, one will be automatically generated
(recommended). If the id is specified, but it is incompatible with the description of
the policy (for example if an OMA defined id is used and there are some
multi_identity_conditions), a new one will be automatically generated.

update_presence_policy(self, policy, **attributes)

Modifies a presence policy's properties. The keywords can be any of the
PresencePolicy attributes, with the same meaning. The id of the policy to be
modified is taken from the first argument. If such a policy does not exist and there is
sufficient information about the policy, it is added. If the policy to be modified uses
the OMA extension to reference resource-lists and multi_identity_conditions are
specified in the keywords, a new policy whose properties are the combination of the
existing policy and the keywords is created.

remove_presence_policy(self, policy)

 158

Removes the presence policy identified by the id attribute of the PresencePolicy
object specified. If the id is None or does not exist in the document, the operation
does not do anything. Some standard OMA policies (wp_prs_unlisted,
wp_prs_allow_unlisted, wp_prs_block_anonymous, wp_prs_allow_own,
wp_prs_grantedcontacts, wp_prs_blockedcontacts) cannot be removed.

add_dialoginfo_policy(self, policy)

Adds a new dialoginfo policy, described by a DialoginfoPolicy object. If the id is
specified and a policy with the same id exists, the operation does not do anything.
Otherwise, if the id is not specified, one will be automatically generated
(recommended).

update_dialoginfo_policy(self, policy, **attributes)

Modifies a dialoginfo policy's properties. The keywords can be any of the
DialoginfoPolicy attributes, with the same meanining. The id of the policy to be
modified is taken from the first argument. If such a policy does not exist and there is
sufficient information about the policy, it is added.

remove_dialoginfo_policy(self, policy)

Removes the dialoginfo policy identified by the id attribute of the DialoginfoPolicy
object specified. If the id is None or does not exist in the document, the operation
does not do anything.

set_status_icon(self, icon)

Sets the status icon using the information from the Icon object specified. The
location attribute is ignored. The MIME type must be one of image/gif, image/png
or image/jpeg. If the argument is None, the status icon is deleted.

set_offline_status(self, status)

Sets the offline status using the information from the OfflineStatus object
specified. If the argument is None, the offline status document is deleted.

notifications

XCAPManagerWillStart

This notification is sent just after calling the start method.

timestamp:

A datetime.datetime object indicating when the notification was sent.

XCAPManagerDidStart

SIP	 SIMPLE	 CLIENT	 SDK 159

 159

This notification is sent after the XCAPManager has started doing its tasks
(contacting the XCAP server, subscribing to xcap-diff event). This notification does
not mean that any of these operations were successful, as the XCAPManager will
retry them continuously should they fail.

timestamp:

A datetime.datetime object indicating when the notification was sent.

XCAPManagerWillEnd

This notification is sent just after calling the stop method.
timestamp:

A datetime.datetime object indicating when the notification was sent.

XCAPManagerDidEnd

This notification is sent when the XCAPManager has stopped performing any tasks.
This also means that any active xcap-diff subscription has been terminated.

timestamp:

A datetime.datetime object indicating when the notification was sent.

XCAPManagerDidDiscoverServerCapabilities

This notification is sent when the XCAPManager contacts an XCAP server for the first
time or after the connection is reset due to configuration changes. The data of the
notification contains information about the server's capabilities (obtained using the
xcap-caps application).

 160

contactlist_supported:

A boolean indicating the support of documents needed for contact management
(resource-lists and rls-services).

presence_policies_supported:

A boolean indicating the support of documents needed for presence policy
management (org.openmobilealliance.pres-rules or pres-rules).

dialoginfo_policies_supported:

A boolean indicating the support of documents needed for dialoginfo policy
management (org.openxcap.dialog-rules).

status_icon_supported:

A boolean indicating the support of documents needed for status icon
management (org.openmobilealliance.pres-content).

offline_status_supported:

A boolean indicating the support of documents needed for offline status
management (pidf-manipulation).

timestamp:

A datetime.datetime object indicating when the notification was sent.

XCAPManagerDidReloadData

This notification is sent when the XCAPManager synchronizes with the XCAP server.
The data of the notification contains objects representing the data as it is stored on
the XCAP server.

SIP	 SIMPLE	 CLIENT	 SDK 161

 161

contacts:

A list of Contact objects.

groups:

A list of strings.

services:

A list of Service objects.

presence_policies:

A list of PresencePolicy objects.

dialoginfo_policies:

A list of DialoginfoPolicy objects.

status_icon:

A StatusIcon object if one is stored, None otherwise.

offline_status:

A OfflineStatus object if offline status information is stored, None otherwise.

timestamp:

A datetime.datetime object indicating when the notification was sent.

XCAPManagerDidChangeState

This notification is sent when the XCAPManager transitions from one state to
another.

prev_state:

The old state of the XCAPManager, a string.

state:

The new state of the XCAPManager, a string.

timestamp:

A datetime.datetime object indicating when the notification was sent.

 162

Threading API
The threading API is used by the middleware to provide an easy interface to create
and use threads. Threads provided by this API are implemented using the
EventQueue object which provides a easy way of serializing operations and running
them in another thread. The API also provides decorators and functions to easily run
functions in the desired thread.

SIP	 SIMPLE	 CLIENT	 SDK 163

 163

Thread Manager
The Thread Manager is a Singleton responsible for creating and keeping track of
EventQueue based threads. It's used by the configuration framework in order to run
all configuration saving/deleting operations in a single thread, for example.

methods

__init__(self)

Instantiates a new ThreadManager or returns the already instantiated
ThreadManager instance, since it's a Singleton.

start(self)

Start the ThreadManager. This method doesn't really do anything since threads are
created by using the get_thread function.

stop(self)

Stop the ThreadManager. All threads will be stopped and joined.

get_thread(self, thread_id)

Return the thread matching the given ID. If the ID doesn't exist it will be created and
added to the ThreadManager's internal data.

stop_thread(self, thread_id)

Stops the thread matching the given ID. The thread will also be joined from a
internal thread whose ID is thread-ops.

utility functions and decorators

call_in_thread(thread_id, func, *args, **kwargs)

Function which will run the given func in the specified thread.

run_in_thread(thread_id)

Decorator which will run the decorated function in the specified thread.

 164

The reactor thread and green threads
SIP SIMPLE SDK uses Twisted's reactor to run an event loop where some internal
operations are performed.

Green threads are threads that work in userspace on top of one (or more) native
threads in a cooperative way. They are not preemptive, so only one green thread
may run at a given moment and another one can only run if the first yielded the
control explicitly (unlike preemptive threads). Green threads run on top of the
reactor thread.

utility functions and decorators

Utility functions and decorators are provided in order to run code in the reactor
thread or in a new green thread in the sipsimple.threading and
sipsimple.threading.green packages.

call_in_twisted_thread(func, *args, **kwargs)

Function which will run the given func in the reactor thread.

run_in_twisted_thread

Decorator which will run the decorated function in the reactor thread.

call_in_green_thread(func, *args, **kwargs)

Function which will spawn a new green thread and run the given func there.

run_in_green_thread

Decorator which will spawn a new green thread and run the decorated function
there.

run_in_waitable_green_thread

Decorator which will spawn a new green thread and run the decorated function there
with the ability of waiting for the result of the function. This will make code look
blocking, but as it's running in a green thread it's not, since it's cooperating with
other green threads.

SIP	 SIMPLE	 CLIENT	 SDK 165

 165

Configuration API
The configuration API is used by the Middleware API to store and read its settings.

By managing the settings of the middleware through this configuration API one can
create different applications that behave consistently and inherit the same settings.
For example a command line client or a GUI program can read and write their
settings through this API.

In addition, the configuration API offers an extensibility framework, by which
applications can add their specific settings which will be managed in the same way as
the middleware settings. The settings are loaded and saved from/to persistent
storage using a backend; a backend is provided which has a simple text file format.

The settings can be managed by API calls. The middleware settings have appropriate
defaults so that it can function properly with a minimum amount of changes.

 166

Architecture
Configuration API consists of the low-level classes that can be used for storing and
retrieving configuration objects. Moreover, it allows the creation of a higher level API
for accessing configuration items. The SIP SIMPLE settings are defined using this
API, however application-specific settings can also make use of it in order to define a
consistent view of all the settings, by either extending the settings objects defined in
the middleware or creating new settings objects.

The module sipsimple.configuration contains the main classes of the configuration
API. These are:

1. ConfigurationManager
2. SettingsObject
3. SettingsGroup
4. Setting
5. SettingsObjectExtension

In addition, the exceptions which make up this package are:

1. ConfigurationError (base class for all other configuration errors)
2. ObjectNotFoundError

The package sipsimple.configuration.backend contains the abstract interface for
configuration backends, as well as concrete implementations of backends. This
package is explained in more detail in Configuration Backend API.

SIP	 SIMPLE	 CLIENT	 SDK 167

 167

ConfigurationManager
The central entity is the ConfigurationManager, which is used for storing and
retrieving settings. Within the ConfigurationManager, settings can be represented in
a hierarchical structure, where the root the of tree is the configuration document.
This structure is represented using a dictionary, defined recursively as:

1. the keys of the dictionary are unicode objects
2. the values of the dictionary can be:
3. the None object (this represents a default value)
4. unicode objects
5. lists of unicode objects
6. dictionaries using this specification

An item in the dictionary with an unicode object or a list as the value is a single
setting: the name of the item is the name of the setting. An item with a dictionary as
the value is a group of settings: the name of the item is the name of the group. This
dictionary representation is stored to a persistent storage and loaded using the
configuration backend as explained in Configuration Backend API. Any backend which
is able to store and load such data can be used, but a simple text file backend is
provided. After configuration data is loaded from the backend, it is saved on the
ConfigurationManager and can be managed using its methods; in order to save the
data using the backend provided, the save method needs to be called; any calls to
update or delete will not ask the backend to store the data as well.

The ConfigurationManager class is a singleton to allow any part of the code to access
it without the need to pass references. However, its start method needs to be called
before it can be used. Once this is done, objects can be added, retrieved or deleted
from the underlying storage; if using the SIPApplication class, its start method takes
care of this passing as the backend the one it receives as an argument. The methods
of ConfigurationManager are:

__init__(self)

References to the ConfigurationManager instance can be obtained anytime without
passing any arguments. However, it needs the manager needs to be started in order
to be used, otherwise all methods will raise a RuntimeError.

start(self, backend)

The start method allows the ConfigurationManager instance to use the specified
backend for accessing the underlying storage. See Configuration Backend API for
information on what the required interface for the passed object is. Raises a
ConfigurationBackendError if the backend cannot load the configuration data from
persistent storage.

update(self, group, name, data)

The partial data which must be a dictionary as formerly defined corresponding to an
object having the specified name under the specified group. If group is None, the
object will be saved top-level (its name will the a top-level key in the data

 168

dictionary). Note that changes will not be written to the underlying storage until the
save method is called.

delete(self, group, name)

If an object stored as name exists in group, then it will be deleted. If group is None,
then the top-level object identified by name will be deleted.

get(self, group, name)

Retrieves the object stored with name in group, if it exists. Otherwise, the method
will raise an ObjectNotFoundError. If group is None, the top-level object identified by
name will be retrieved.

get_names(self, group)

Returns a list with all the names of the objects in group. Returns an empty list if the
group does not exist.

save(self)

Flushes the changes made to the configuration to the backend. This method must be
called to ensure that all changes have been written to persistent storage. Raises a
ConfigurationBackendError if the backend cannot store the data to persistent
storage.

SIP	 SIMPLE	 CLIENT	 SDK 169

 169

SettingsObject
A SettingsObject is used to represent a hierarchy of settings, which are managed via
the ConfigurationManager. There are two types of SettingsObject:

1. SettingsObjects without an ID, i.e. there should be only one instance of this
SettingsObject in an application. The application should define these objects
using the Singleton metaclass. This also means that the object cannot be
deleted. An example of such a SettingsObject is SIPSimpleSettings. These
SettingsObjects are useful to represent global settings.

2. SettingsObjects with an associated id. The instances are not necessarily
persistent. New ones can be created and existing ones can be deleted. An
example of such a SettingsObject is the Account. These SettingsObjects are
useful to represent settings which apply to entities identifiable by a string id.
The ID can be changed, which means these objects cannot be Singletons.

SettingsObjects can belong to a group, depending on whether the __group__
attribute was specified. If it wasn't, the data will be saved top-level using the id of
the SettingsObject; otherwise, the data will be saved under the group specified using
the id. It is recommended that SettingsObjects with instances per id be saved in a
group, although this is not enforced. For example, the Account instances are saved
in a group named Accounts.

When a SettingsObject is instantiated its contained settings are loaded from the
configuration storage. If it is the first time a SettingsObject is created, the default
values for the settings will apply. The SettingsObject will only be copied to storage
when its save method is called.

Defining a global SettingsObject

In order to define a global SettingsObject, the __id__ attribute must be defined on
the class, while the __group__ attribute can be defined. The __id__ must not be
used in any other SettingsObject which is stored in the same group (or globally if the
__group__ attribute is missing).

An example of defining a global SettingsObject:

from application.python.util import Singleton
from sipsimple.configuration import SettingsObject

class SIPSimpleSettings(SettingsObject):
 __metaclass__ = Singleton
 __group__ = 'Global'
 __id__ = 'SIPSimple'

The __init__ method must not accept any other argument except self. It will be
called each time the settings are loaded from the storage, not only the first time the
object is created.

Defining a per-id SettingsObject

In order to define a per-id SettingsObject, the __group__ attribute should be defined
on the class, while the __id__ attribute must be left to None. When instantiating the
resulting class, exactly one argument must be given, which represents the string id.

 170

Each class defined as a per-id SettingsObject should be allocated a different group
from all the other SettingsObjects (including global ones), otherwise the keys under
which the SettingsObjects are stored could overlap. An example of defining a per-id
SettingsObject:

from sipsimple.configuration import SettingsObject

class Account(SettingsObject):
 __group__ = 'Accounts'
 def __init__(self, id):
 """Do something each time the Account is loaded"""

The __init__ method must accept exactly one argument except self. It will be called
each time the object is loaded from the storage, in addition to the first time the
object is created. This allows the SettingsObject to be more than a simple collection
of settings.

methods

save(self)

If the contained Settings of this SettingsObject have changed, the object will be
saved to the persistent storage. A CFGSettingsObjectDidChange notification will be
issued which contains the modified settings. If the save fails, a
CFGManagerSaveFailed notification is issued in addition.

delete(self)

This method can only be called on per-id SettingsObjects. It will delete the object
from the persistent storage. All references to this SettingsObject must be removed.

Notifications

CFGManagerSaveFailed

This notification is sent when the save or delete method of a SettingsObject fail to
save the data in the configuration manager storage backend. Attributes:

SIP	 SIMPLE	 CLIENT	 SDK 171

 171

modified:

A dict instance which maps settings keys in their fully qualified form (attribute
names separated by '.', relative to the SettingsObject) to a ModifiedValue
instance; the ModifiedValue instance contains two attributes: old and new which
are set to the old and the new Setting's value respectively. If the object was
never saved before, it will be None.

exception:

The exception object that was raised while attempting to save the data in the
configuration manager.

operation:

Attempted opperation, one of 'save' or 'delete'.

timestamp:

A datetime.datetime object representing the moment the notification was sent.

CFGSettingsObjectDidChange

This notification is sent when the save method of a SettingsObject is called and some
settings were previously changed. Attributes:

modified:

A dict instance which maps settings keys in their fully qualified form (attribute
names seperated by '.', relative to the SettingsObject) to a ModifiedValue
instance; the ModifiedValue instance contains two attributes: old and new which
are set to the old and the new Setting's value respectively.

timestamp:

A datetime.datetime object representing the moment the notification was sent.

CFGSettingsObjectDidChangeID

This notification is sent when the save method of SettingsObject is called and the ID
of the object was previously changed. Attributes:

old_id:

The old value of the ID.

new_id:

The new value of the ID.

timestamp:

A datetime.datetime object representing the moment the notification was sent.

 172

Setting
The Setting descriptor is used to describe a setting in SettingsObjects. The following
methods are part of the public API of it:

__init__(self, type, default=None, nillable=False)

Create a new Setting descriptor which represents a setting in all instances of a
SettingsObject. The default value must be specified if the setting is not nillable. The
type will be applied to the values which are set to this descriptor if the value is not
already an instance of the type; it is not applied to the default value.

An example of using a setting:

from application.python.util import Singleton
from sipsimple import __version__
from sipsimple.configuration import Setting, SettingsObject

class SIPSimpleSettings(SettingsObject):
 __metaclass__ = Singleton
 __group__ = 'Global'
 __id__ = 'SIPSimple'

 user_agent = Setting(type=str, default='sipsimple %s' %
__version__)

When a setting value is read from the configuration backend, the type is used to
reconstruct the value from a unicode object, a list of unicode objects, or a dictionary
containing unicode keys and values with any of these three types. Several built-in
types are recognised and are handled automatically:

1. bool: the unicode strings u'yes', u'true', {{{u'on' and u'1' are considered to
have the value True, while u'no', u'false', u'off' and u'0' are considered to
have the value False; the comparison is done case insensitively; all other
strings are considered invalid.

2. int, long and basestring: the type is called using the value as an argument.

All other types are instantiated using an un-pickling like mechanism. The __new__
method is called without any arguments and __setstate__ is called on the object
returned by __new__ using the value as the sole argument.

Saving a setting value is done similarly, according to type. The builtin types which
are handled are the same:

1. bool: the unicode objects u'true' and u'false are used depending on the value.
2. int, long and basestring: unicode is called with the value as the sole

argument.
3. For all other types, the __getstate__ method is called which should return an

appropriate value.

SIP	 SIMPLE	 CLIENT	 SDK 173

 173

SettingsGroup
A SettingsGroup allows settings to be structured hierarchically. Subclasses of
SettingsGroup are containers for Settings and other SettingsGroups just as
SettingsObjects are. In addition, the subclasses of SettingsGroup are descriptors and
can be used as such to assign a SettingsGroup as a child of another SettingsGroup or
a SettingsObject. An example usage containing Setting, SettingsGroup and
SettingsObject:

from application.python.util import Singleton
from sipsimple import __version__
from sipsimple.configuration import Setting, SettingsGroup,
SettingsObject

class TLSSettings(SettingsGroup):
 verify_server = Setting(type=bool, default=False)

class SIPSimpleSettings(SettingsObject):
 __metaclass__ = Singleton
 __group__ = 'Global'
 __id__ = 'SIPSimple'

 user_agent = Setting(type=str, default='sipsimple %s' %
__version__)

 tls = TLSSettings

 174

SettingsObjectExtension
The SettingsObjectExtension allows an application to add or customize the settings of
the middleware according to its needs. In order to add or replace settings/settings
groups defined in another SettingsObject, SettingsObjectExtension can be subclassed
and the register_extension class method of the original SettingsObject can be called
passing the SettingObjectExtension subclass as the sole argument. In order to
add/replace settings in a group of settings, the original SettingsGroup can be
subclassed. Example:

from sipsimple import __version__
from sipsimple.configuration import Setting, SettingsGroup,
SettingsObject, SettingsObjectExtension

class TLSSettings(SettingsGroup):
 verify_server = Setting(type=bool, default=False)

class SIPSimpleSettings(SettingsObject):
 __group__ = 'Global'
 __id__ = 'SIPSimple'

 user_agent = Setting(type=str, default='sipsimple %s' %
__version__)

 tls = TLSSettings

class TLSSettingsExtension(TLSSettings):
 verify_client = Setting(type=bool, default=True)

class SIPSimpleSettingsExtension(SettingsObjectExtension):
 default_account = Setting(type=str, default=None, nillable=True)

 tls = TLSSettingsExtension

SIPSimpleSettings.register_extension(SIPSimpleSettingsExtension)

Backend API

The backend API provides a way to use the configuration framework consistently,
while using any system for storing the data persistently. The ConfigurationManager
makes use of a backend whenever it needs to write/read something to the persistent
storage. The backend only needs to know how to handle data in the dictionary
format explained in Configuration Manager. In order to use a specific backend, it is
given to the ConfigurationManager in its start method.

The interface sipsimple.configuration.backend.IBackend describes the backend:

load()

Load the configuration data using whatever means employed by the backend
implementation and return a dictionary conforming to the definition in Configuration
Manager.

SIP	 SIMPLE	 CLIENT	 SDK 175

 175

save(data)

Given a dictionary conforming to the definition in this interface, save the data using
whatever means employed by the backend implementation.

FileBackend
A concrete implementation of the IBackend interface resides in
sipsimple.configuration.backend.file.FileBackend. The methods different from the
ones in IBackend are:

__init__(self, filename, encoding='utf-8')

Create a new FileBackend which uses the specified filename for loading and storing
the data to; the data is written using the specified encoding, defaulting to UTF-8.

This object saves the data using a simple text file format with the following syntax:

SettingGroups, SettingsObjects or Groups of SettingsObjects are represented by
their name (or id in the case of SettingsObjects) followed by a colon (:). These
containers can contain other such containers or simple settings. Their children need
to be indented more that the container itself. The indentation need not be consistent.

Accounts:
 user@domain:
 display_name = User
 tls:
 certificate =

Simple settings are represented by a name followed by an equals sign and the value;
whitespace anywhere in between is ignored. The different values are represented in
the following way:

None is represented by the absence of a value.

setting =

Unicode objects are represented by a simple string (which can be quoted to include
leading and trailing whitespace by either single or double quotes) and can have the
following espace sequances: \' , \", \n, \r. The unicode characters are encoded using
the encoding specified in the constructor.

 setting1 = value
 setting2 = value with spaces
 setting3 = " value with leading and trailing spaces "
 setting4 = value with a line feed\n

Lists are represented by unicode strings as described above separated by commas
(,). Any not-quoted whitespace around the comma is ignored.

setting = a, b , c

 176

Complex settings can be represented just like a group:

complex_setting:
 field1 = value
 field2 = 123

SIP	 SIMPLE	 CLIENT	 SDK 177

 177

Middleware Settings
These are the current settings, kept in the modules sipsimple.configuration.settings
and sipsimple.account. The main classes used to access the settings are Account,
BonjourAccount and SIPSimpleSettings. All settings can be accessed as simple
attributes. The types of attributes is described for each setting below. When setting
the value of an attribute, if it's not of the required type, it will be given to the
specified type as the only argument. The modified settings are not saved to the
persistent storage until the save method is called on the main object. Once this is
done, a CFGSettingsObjectDidChange notification is sent, the data of which is
explained in SettingsObject Notifications.

Only a nillable setting can be assigned the value None, even if the type of the setting
would otherwise accept None as an argument. The settings as described below are
not nillable, unless specified explicitely. To reset the value of a setting, the special
object sipsimple.configuration.DefaultValue can be assigned to it. If a default value is
not explicitely specified below, it defaults to None. Note that a non-nillable setting
cannot have the default value of None.

General

SIP SIMPLE settings:
 +-- default_account = user@example.com
SIP SIMPLE --|-- user_agent = sipsimple
 |-- audio
 |-- chat
 |-- desktop_sharing
 |-- file_transfer
 |-- logs
 |-- msrp
 |-- rtp
 |-- sip
 +-- tls

 +-- alert_device = system_default
audio --|-- input_device = system_default
 |-- output_device = system_default
 |-- sample_rate = 44100
 |-- silent = False
 +-- tail_length = 200

 +
chat --|
 +

 +
desktop_sharing --|
 +

 +
file_transfer --|
 +

 +-- pjsip_level = 5

 178

logs --|
 +

 +-- transport = tls
msrp --|
 +

 +-- audio_codec_list = AudioCodecList(['speex', 'G722', 'PCMU',
'PCMA', 'iLBC', 'GSM'])
rtp --|-- port_range = PortRange(start=50000, end=50400)
 +-- timeout = 30

 +-- tcp_port = 0
sip --|-- tls_port = 0
 |-- transport_list = SIPTransportList(['tls', 'tcp', 'udp'])
 +-- udp_port = 0

 +-- ca_list = None
tls --|-- protocol = TLSv1
 +-- timeout = 1000

The sipsimple.configuration.settings.SIPSimpleSettings class is a singleton can be
instantiated and used anywhere after the ConfigurationManager has been started.

The settings are explained below:

SIPSimpleSettings.default_account (type=str,
default='bonjour@local', nillable=True)

A string, which contains the id of the default Account. This setting is managed by the
AccountManager and should not be changed manually. See AccountManager for more
information.

SIPSimpleSettings.user_agent (type=str, default='sipsimple VERSION')

This setting will be used to set the value of the User-Agent header in outgoing SIP
requests and of the Server header in all SIP responses.

Audio

SIPSimpleSettings.audio.input_device (type=AudioInputDevice,
default='system_default', nillable=True)

The name of the audio device, which will be used for input (recording). If it is set to
'system_default', one will be selected automatically by the operating system; if it is
set to None, a dummy device will be used which doesn't record anything.

SIPSimpleSettings.audio.output_device (type=AudioOutputDevice,
default='system_default', nillable=True)

The name of the audio device, which will be used for output (playback). If it is set to
'system_default'}}, one will be selected automatically by the operating system; if it
is set to {{{None, a dummy device will be used which will discard any audio data.

SIP	 SIMPLE	 CLIENT	 SDK 179

 179

SIPSimpleSettings.audio.alert_device (type=AudioOutputDevice,
default='system_default', nillable=True)

The name of the alert device, which can be used for alerting the user. If it is set to
'system_default', one will be selected automatically by the operating system; if it is
set to None, a dummy device will be used which will discard any audio data. This
device is not used by the middleware but is provided for consistency.

SIPSimpleSettings.audio.tail_length (type=NonNegativeInteger,
default=200)

This setting is used as a parameter for the audio echo cancellation algorithm. It's
value is a non-negative integer which represents milliseconds. It specifies the length
of the echo cancellation filter.

SIPSimpleSettings.audio.sample_rate (type=SampleRate, default=16000)

This is the sample rate at which the audio system runs, in Hz. All playback and
recording will be done at this rate. If an audio codec has a smaller or larger sample
rate, it will be resampled to this value (if possible). Example values include 8000,
32000, 44100 etc.

SIPSimpleSettings.audio.silent (type=bool, default=False)

If this setting is set to True, no audio notifications will be played on the alert device
(the volume of the alert device will be set to 0).

Chat
Empty section for future use.

Desktop Sharing
Empty section for future use.

File Transfer
Empty section for future use.

Logs

SIPSimpleSettings.logs.pjsip_level (type=NonNegativeInteger, default=5)

This setting controls the amount of log messages generated by the PJSIP core. It
must be set to a non-negative integer.

MSRP

SIPSimpleSettings.msrp.transport (type=MSRPTransport, default='tls')

MSRP can use either TLS or TCP and this setting controls which one should be used
for normal accounts.

 180

RTP

SIPSimpleSettings.rtp.port_range (type=PortRange,
default=PortRange(50000, 50400))

This setting controls the port range from which ports used by RTP transport will be
assigned. The values of the ports need to be in the range 1-65535; the start port
must not be larger than the end port.

SIPSimpleSettings.rtp.audio_codec_list (type=AudioCodecLis}t}},
default={{{AudioCodecList(('speex', 'G722', 'PCMU', 'PCMA')))

This setting is used to specify the preferred audio codecs, which should be used for
audio calls. It must contain only strings, which represent the supported codecs
(speex, G722, PCMA, PCMU, iLBC and GSM), in the order in which they are preferred.
This setting can be overridden per account.

SIP

SIPSimpleSettings.sip.udp_port (type=Port, default=0)

This is the port on which the Engine will bind and for for sending and receiving UDP
packets. It is an integer in the range 0-65535. If it is set to 0, it will be allocated
automatically.

SIPSimpleSettings.sip.tcp_port (type=Port, default=0)

This is the port on which the Engine will listen for TCP connections. It is an integer in
the range 0-65535. If it is set to 0, it will be allocated automatically.

SIPSimpleSettings.sip.tls_port (type=Port, default=0)

This is the port on which the Engine will listen for TLS connections. It is an integer in
the range 0-65535. If it is set to 0, it will be allocated automatically. The port must
be different than the port used for TCP connections.

SIPSimpleSettings.sip.transport_list (type=SIPTransportList,
default=SIPTransportList(('tls', 'tcp', 'udp')))

This setting's value is a tuple, which can only contain the strings 'tls', 'tcp' and 'udp'.
It has a double purpose:

Only the transports specified here are used to SIP requests associated with normal
accounts.

The order of the transports specified in this tuple represent the preferred order in
which transports should be used. This applies to all SIP requests.

TLS

SIPSimpleSettings.tls.ca_list (type=Path, default=None, nillable=True)

The settings points to a file which contains the CA certificates. In can be None, in
which case no CAs are available. It is interpreted as an absolute path, with a leading

SIP	 SIMPLE	 CLIENT	 SDK 181

 181

~ expanded to the home directory of the current user. In order to access the full
path to the CA file, the normalized attribute on the setting can be used:

 SIPSimpleSettings().tls.ca_list.normalized

SIPSimpleSettings.tls.protocol (type=TLSProtocol, default='TLSv1')

This setting sets the version of the TLS protocol which will be used. It is a string and
must be one of 'TLSv1'.

SIPSimpleSettings.tls.timeout (type=NonNegativeInteger, default=1000)

This is the timeout for negotiating TLS connections, in milliseconds. It must be an
non-negative integer.

Account

Account user@example.com:
 +-- display_name = Example User
account --|-- enabled = True
 |-- auth
 |-- dialog_event
 |-- message_summary
 |-- nat_traversal
 |-- presence
 |-- pstn
 |-- rtp
 |-- sip
 |-- tls
 +-- xcap

 +-- password = xyz
auth --|-- username = None
 +

 +-- enabled = True
dialog_event --|
 +

 +-- enabled = True
message_summary --|-- voicemail_uri = None
 +

 +-- msrp_relay = None
nat_traversal --|-- stun_server_list = None
 |-- use_ice = False
 |-- use_msrp_relay_for_inbound = True
 +-- use_msrp_relay_for_outbound = False

 +-- enabled = True
presence --|-- use_rls = True
 +

 +
pstn --|
 +

 182

 +-- audio_codec_list = None
rtp --|-- inband_dtmf = False
 |-- srtp_encryption = optional
 +-- use_srtp_without_tls = False

 +-- outbound_proxy = SIPProxyAddress('sip.example.com',
port=5060, transport='udp')
sip --|-- publish_interval = 3600
 |-- always_use_my_proxy = False
 |-- register = True
 |-- register_interval = 600
 +-- subscribe_interval = 3600

 +-- certificate = tls/user@example.com.crt
tls --|-- verify_server = False
 +

 +-- enabled = True
xcap --|
 +-- xcap_root = https://xcap.example.com/xcap-root/

The Account object is used to represent a normal SIP account registered at a SIP
provider. It is uniquely identifiable by it's SIP ID, in the form user@domain. There is
exactly one instance of Account per ID, which means that an Account can be
accessed by instantianting it anywhere. However, this is not the recommended way
of accessing accounts, since it can lead to creating new accounts. The recommended
way is by using the AccountManager. Information about the roles of Account, apart
from being a collection of settings, is explained in the Middleware API.

The settings that can be accessed on an Account are described below:

Account.id (type=SIPAddress)

Its type is a subclass of str, so it can be used as a normal string, however it also has
two attributes username and domain which point to the specific parts of the SIP
address.

Account.display_name (type=str, default=None, nillable=True)

The contents of this setting will be sent as part of the From header when sending SIP
requests, the From CPIM header and other similar information.

Account.enabled (type=bool, default=False)

If this setting is set to True, the Account will automatically activate and can be used
in other parts of the middleware. More about this is described in Account.

Auth

Account.auth.username (type=str, default=None, nillable=True)

SIP	 SIMPLE	 CLIENT	 SDK 183

 183

The username used for authentication if it is different from the one in the SIP ID of
the account. If it is None or an empty string, the account SIP ID username will be
used instead.

Account.auth.password (type=str, default='')

The password, which will be used with this account for authentication.

Dialog Event

Account.dialog_event.enabled (type=bool, default=True)

If this setting is set to True, the Account will subscribe to the dialog event as
specified by RFC4235.

Message Summary

Account.message_summary.enabled (type=bool, default=True)

If this setting is set to True, the Account will subscribe to the message-summary
event, as specified by RFC3842.

Account.message_summary.voicemail_uri (type=str, default=None,
nillable=True)

This is the SIP URI where the Subscribe for message-summary is sent.

NAT Traversal

Account.nat_traversal.use_ice (type=bool, default=False)

If this setting is set to True, ICE will be used for finding media candidates for
communication over NAT-ed networks.

Account.nat_traversal.stun_server_list (type=StunServerAddressList,
default=None, nillable=True)

This setting used for NAT traversal can be used to specify the addresses of the STUN
servers used for detecting server reflexive candidates in the context of ICE. The
value of the setting is a tuple of objects of type StunServerAddress. If None, the
servers will be looked up in the DNS (SRV record _stun._udp.domain).

Account.nat_traversal.msrp_relay (type=MSRPRelayAddress, default=None,
nillable=True)

This setting can be used to specify a MSRP relay for use in MSRP connections. If it is
set to None. If None, the servers will be looked up in the DNS (SRV record
_msrps._tcp.domain).

Account.nat_traversal.use_msrp_relay_for_inbound (type=bool,
default=True)

 184

If this setting is set to True, the MSRP relay will be used for all incoming MSRP
connections.

Account.nat_traversal.use_msrp_relay_for_outbound (type=bool,
default=False)

If this setting is set to True, the MSRP relay will be used for all outgoing MSRP
connections.

Presence

Account.presence.enabled (type=bool, default=True)

If this setting is set to True, the Account will publish its presence state and subscribe
to presence and presence.winfo Event packages.

Account.presence.use_rls (type=bool, default=False)

If this setting is set to True, the Account will store its Buddy Lists in rls-services
XCAP document and send a single Subscribe for the presence event to the RLS
services address to obtain the presence information for its buddies. If it is set to
False, it will subscribe to each buddy individually.

RTP

Account.rtp.audio_codecs (type=AudioCodecList, default=None,
nillable=True)

This setting is used to specify the preferred audio codecs, which should be used for
audio calls of this account. It must be a tuple containing only strings, which
represent the supported codecs (speex, g722, g711, ilbc and gsm), in the order in
which they are preferred, or None if the codec_list from the general rtp settings is to
be used.

Account.audio.srtp_encryption (type=SRTPEncryption, default='optional')

The value of this setting specifies how the account requires the calls to be encrypted
using SRTP. It can be one of the values 'disabled', 'optional' or 'mandatory'.

Account.audio.use_srtp_without_tls (type=bool, default=False)

If this setting is set to True, SRTP could be used even if the SIP signaling used to
control the call is not over TLS.

SIP

Account.sip.always_use_my_proxy (type=bool, default=False)

If this setting is set to True and the outbound proxy is not set, the signalling for
outbound requests going to foreign domains will be sent to the account proxy instead
of sending it to the foreign proxy.

SIP	 SIMPLE	 CLIENT	 SDK 185

 185

Account.sip.outbound_proxy (type=SIPProxyAddress, default=None,
nillable=True)

This setting specifies whether to send all SIP requests when creating a new SIP
dialog to a specific proxy. If this setting is set to None, then an RFC3263 lookup will
be done based on the domain part of the SIP request URI.

Account.sip.register (type=bool, default=True)

If this setting is set to True, the Account will automatically register when it is active.
More about this is described in Account.

Account.sip.publish_interval (type=NonNegativeInteger, default=600)

This setting controls the number of seconds used for the Expire header when
publishing events. It must be a non-negative integer.

Account.sip.subscribe_interval (type=NonNegativeInteger, default=600)

This setting controls the number of seconds used for the Expire header when
subscribing to events. It must be a non-negative integer.

Account.registration.interval (type=NonNegativeInteger, default=600)

This setting controls the number of seconds used for the Expire header when
registering. It must be a non-negative integer.

TLS

Account.tls.certificate (type=Path, default=None, nillable=True)

The path to the file that contains the certificate and its private key used to
authenticate on TLS connections. It is interpreted as an absolute path, with a leading
~ expanded to the home directory of the current user. In order to access the full
path to the TLS certificate, the normalized attribute on the setting can be used:

account.tls.certificate.normalized
Account.tls.verify_server (type=bool, default=False)

If this setting is set to True, the middleware will verify the server's certificate when
connecting via TLS.

XCAP

Account.xcap.enabled (type=bool, default=True)

If this setting is set to True, The use of XCAP root set below will be activated.

Account.xcap.xcap_root (type=XCAPRoot, default=None, nillable=True)

The XCAP root is required for accessing documents via the XCAP protocol. It must be
a URL with either the http or https schemes.

 186

Account.xcap.use_xcap_diff (type=bool, default=True)

If this setting is set to True, the Account will subscribe to the xcap-diff event in order
to find out if the XCAP documents handled by the Account are modified by another
entity.

BonjourAccount

Account bonjour@local:
 +-- display_name = Bonjour User
account --|-- enabled = False
 |-- msrp
 |-- rtp
 |-- sip
 +-- tls

 +-- transport = tcp
msrp --|
 +

 +-- audio_codec_list = None
rtp --|-- inband_dtmf = False
 |-- srtp_encryption = optional
 +-- use_srtp_without_tls = False

 +-- transport_list = SIPTransportList(['udp'])
sip --|
 +

 +-- certificate = tls/bonjour@local.crt
tls --|-- verify_server = False
 +

The BonjourAccount is a singleton object as there can only be one bonjour account
on a system. A bonjour account is used in P2P mode and does not interact with any
server. Similar to the Account, it is used both as a complex object, which contains
the required behavior for bonjour, as well as a container for the settings which apply
to it.

The settings of the BonjourAccount are described below:

BonjourAccount.id (type=SIPAddress)

This is not a setting, as it is the static string 'bonjour@local' which represents the id
of the BonjourAccount.

BonjourAccount.enabled (type=bool, default=True)

If this setting is set to True, the account will be used. More information about this is
in BonjourAccount.

BonjourAccount.display_name (type=str, default=None, nillable=True)

SIP	 SIMPLE	 CLIENT	 SDK 187

 187

The contents of this setting will be sent as part of the From header when sending SIP
requests.

MSRP

SIPSimpleSettings.msrp.transport (type=MSRPTransport, default='tcp')

MSRP can use either TLS or TCP and this setting controls which one should be used
for the bonjour account.

RTP

BonjourAccount.rtp.audio_codec_list (type=AudioCodecList,
default=('speex', 'g722', 'g711', 'ilbc', 'gsm'))

This setting is used to specify the preferred audio codecs, which should be used for
audio calls of this account. It must be a tuple containing only strings, which
represent the supported codecs (speex, g722, g711, ilbc and gsm), in the order in
which they are preferred.

BonjourAccount.rtp.srtp_encryption (type=SRTPEncryption,
default='optional')

The value of this setting specifies how the account requires the calls to be encrypted
using SRTP. It can be one of the values 'disabled', 'optional' or 'mandatory'.

BonjourAccount.rtp.use_srtp_without_tls (type=bool, default=False)

If this setting is set to True, SRTP could be used even if the SIP signaling used to
control the call is not over TLS.

TLS

BonjourAccount.tls.certificate (type=Path, default=None, nillable=True)

The path to the file that contains the certificate and its private key used to
authenticate on TLS connections. It is interpreted as an absolute path, with a leading
~ expanded to the home directory of the current user. In order to access the full
path to the certificate file, the normalized attribute on the setting can be used:

 BonjourAccount().tls.ca_list.normalized
BonjourAccount.tls.verify_server (type=bool, default=False)

If this setting is set to True, the middleware will verify the server's certificate when
connecting via TLS.

 188

SIPClients Settings
The SIPClients scripts use the Configuration API to extend the settings in the
middleware with some application-specific settings. The following sections list these
additional settings in order to provide an example for the kind of settings which,
being application specific, do not find their place in the middleware and should be
added by the application.

General

SIPSimpleSettings.user_data_directory (type=AbsolutePath,
default='~/.sipclient)

This is the directory, which will be used by default for storing the SIP SIMPLE data.
The relative paths are calculated on runtime based on this setting, which means that
if this setting is changed, all relative paths will point inside the new directory. It is a
string, which must be an absolute path.

Audio

SIPSimpleSettings.audio.directory (type=DataPath,
default=DataPath('history'))

This directory will be used to store recorded audio conversations. Under this
directory, a subdirectory per account with the id of the account as the name will be
created. If it is set to relative path, it is taken relative to
SIPSimpleSettings.user_data_directory; otherwise it is interpreted as an absolute
path. In order to access the full path to the history directory, the value attribute on
the setting can be used:

SIPSimpleSettings().audio.directory.value

File Transfer

SIPSimpleSettings.file_transfer.directory (type=DataPath,
default=DataPath('file_transfers'))

This directory is used to store the files obtained via MSRP file transfer. If it is set to
relative path, it is taken relative to SIPSimpleSettings.user_data_directory;
otherwise it is interpreted as an absolute path. In order to access the full path to the
history directory, the value attribute on the setting can be used:

SIPSimpleSettings().file_transfer.directory.value

Logs

SIPSimpleSettings.logs.directory (type=DataPath,
default=DataPath('logs'))

SIP	 SIMPLE	 CLIENT	 SDK 189

 189

This is the directory where the logs create by the SIP SIMPLE middleware will be
stored. If it is set to relative path, it is taken relative to
SIPSimpleSettings.user_data_directory; otherwise it is interpreted as an absolute
path. In order to access the full path to the history directory, the value attribute on
the setting can be used:

 SIPSimpleSettings().logs.directory.value

SIPSimpleSettings.logs.trace_sip (type=bool, default=False)

If this setting is set to True, the SIP packets will be written to a log file named
'sip_trace.txt', inside the directory pointed by SIPSimpleSettings.logging.directory.

SIPSimpleSettings.logs.trace_pjsip (type=bool, default=False)

If this setting is set to True, the PJSIP log messages will be written to a log file
named 'pjsip_trace.txt', inside the directory pointed by
SIPSimpleSettings.logging.directory.

SIPSimpleSettings.logs.trace_msrp (type=bool, default=False)

If this setting is set to True, the MSRP packets will be written to a log file named
'msrp_trace.txt', inside the directory pointed by SIPSimpleSettings.logging.directory.

SIPSimpleSettings.logs.trace_xcap (type=bool, default=False)

If this setting is set to True, the XCAP packets will be written to a log file named
'xcap_trace.txt', inside the directory pointed by SIPSimpleSettings.logging.directory.

Sounds

SIPSimpleSettings.sounds.audio_inbound (type=AbsolutePath,
default=None, nillable=True)

This setting should point to a wav file, which will be played when a SIP session
request is received. If it is set to None, no sound will be played.

SIPSimpleSettings.sounds.audio_outbound (type=AbsolutePath,
default=None, nillable=True)

This setting should point to a wav file, which will be used as ringtone during an
outgoing SIP session request as a response to a 180 Ringing. If it is set to None, no
sound will be played.

SIPSimpleSettings.sounds.file_sent (type=AbsolutePath, default=None,
nillable=True)

This setting should point to a wav file, which will be played when an outgoing file
transfer is finished. If it is set to None, no sound will be played.

SIPSimpleSettings.sounds.file_received (type=AbsolutePath,
default=None, nillable=True)

 190

This setting should point to a wav file, which will be played when an incoming file
transfer is finished. If it is set to None, no sound will be played.

SIPSimpleSettings.sounds.message_sent (type=AbsolutePath, default=None,
nillable=True)

This setting is a string representing an absolute path to a wav file, which is played
when a message is sent in a chat session. If it is set to None, no sound is played.

SIPSimpleSettings.sounds.message_received (type=AbsolutePath,
default=None, nillable=True)

This setting is a string representing an absolute path to a wav file, which is played
when a message is received in a chat session. If it is set to None, no sound is played.

Account

Sounds

Account.sounds.audio_inbound (type=AbsolutePath, default=None,
nillable=True)

This setting should point to a wav file, which will be used to play the incoming
ringtone. If it is set to None, the wav file set in
SIPSimpleSettings.sounds.audio_inbound will be used instead.

BonjourAccount

Sounds

BonjourAccount.sounds.audio_inbound (type=AbsolutePath, default=None,
nillable=True)

This setting should point to a wav file which will be used as the incoming ringtone. If
it is set to None, the wav file set in SIPSimpleSettings.sounds.audio_inbound will be
used instead.

SIP	 SIMPLE	 CLIENT	 SDK 191

 191

SIP Core API

This chapter describes the internal architecture and API of the SIP core of the
sipsimple library. sipsimple is a Python package, the core of which wraps the PJSIP C
library, which handles SIP signaling and audio media for the SIP SIMPLE client.

SIP stands for 'Sessions Initiation Protocol', an IETF standard described by RFC
3261. SIP is an application-layer control protocol that can establish, modify and
terminate multimedia sessions such as Internet telephony calls (VoIP). Media can be
added to (and removed from) an existing session.

SIP transparently supports name mapping and redirection services, which supports
personal mobility, users can maintain a single externally visible address identifier,
which can be in the form of a standard email address or E.164 telephone number
regardless of their physical network location.

SIP allows the endpoints to negotiate and combine any type of session they mutually
understand like video, instant messaging (IM), file transfer, desktop sharing and
provides a generic event notification system with real-time publications and
subscriptions about state changes that can be used for asynchronous services like
presence, message waiting indicator and busy line appearance.

For a comprehensive overview of SIP related protocols and use cases visit
http://www.tech-invite.com

 192

PJSIP library
sipsimple builds on PJSIP http://www.pjsip.org, a set of static libraries, written in C,
which provide SIP signaling and media capabilities. PJSIP is considered to be the
most mature and advanced open source SIP stack available. The following diagram,
taken from the PJSIP documentation, illustrates the library stack of PJSIP:

The diagram shows that there is a common base library, and two more or less
independent stacks of libraries, one for SIP signaling and one for SIP media. The
latter also includes an abstraction layer for the sound-card. Both of these stracks are
integrated in the high level library, called PJSUA.

PJSIP itself provides a high-level Python wrapper for PJSUA. Despite this, the choice
was made to bypass PJSUA and write the SIP core of the sipsimple package as a
Python wrapper, which directly uses the PJSIP and PJMEDIA libraries. The main
reasons for this are the following:

1. PJSUA assumes a session with exactly one audio stream, whilst for the SIP
SIMPLE client more advanced (i.e. low-level) manipulation of the SDP is
needed.

2. What is advertised as SIMPLE functionality, it is minimal and incomplete
subset of it. Only page mode messaging using SIP MESSAGE method and
basic device status presence are possible, while session mode IM and rich
presence are desired.

3. PJSUA integrates the decoding and encoding of payloads (e.g. presence
related XML documents), while in the SIP SIMPLE client this should be done at
a high level, not by the SIP stack.

PJSIP itself is by nature asynchronous. In the case of PJSIP it means that in general
there will be one thread which handles reception and transmission of SIP signaling

SIP	 SIMPLE	 CLIENT	 SDK 193

 193

messages by means of a polling function which is continually called by the
application. Whenever the application performs some action through a function, this
function will return immediately. If PJSIP has a result for this action, it will notify the
application by means of a callback function in the context of the polling function
thread.

NOTE

Currently the core starts the media handling as a separate C thread to avoid lag
caused by the GIL. The sound-card also has its own C thread.

 194

Architecture
The sipsimple core wrapper itself is mostly written using Cython (formerly Pyrex). It
allows a Python-like file with some added C manipulation statements to be compiled
to C. This in turn compiles to a Python C extension module, which links with the
PJSIP static libraries.

The SIP core part of the sipsimple Python library resides in the sipsimple.core
package. This package aggregates three modules, sipsimple.core._core,
sipsimple.core._engine and sipsimple.core._primitives. The former is a Python C
extension module which makes wrappers around PJSIP objects available in Python,
while the latter two contain SIP core objects written in Python. All core objects
should be accessed from the enclosing sipsimple.core module. The following list
enumerates the various SIP core objects available:

1. The Engine class which is a Python wrapper around the low-level PJSIPUA class.
The latter represents the SIP endpoint and manages the initialization and
destruction of all the PJSIP libraries. It is also the central management point to
the SIP core. The application should not use the PJSIPUA class directly, but rather
through the wrapping Engine, which is a singleton class.

2. Utility classes used throughout the core:
o frozenlist and frozendict: classes which relate respectively to list and dict

similarly to how the standard frozenset relates to set.
3. Helper classes which represent a structured collection of data which is used

throughout the core:
o BaseSIPURI, SIPURI and FrozenSIPURI
o BaseCredentials, Credentials and FrozenCredentials

4. SDP manipulation classes, which directly wrap the PJSIP structures representing
either the parsed or to be generated SDP:

o BaseSDPSession, SDPSession and FrozenSDPSession
o BaseSDPMediaStream, SDPMediaStream and FrozenSDPMediaStream
o BaseSDPConnection, SDPConnection and FrozenSDPConnection
o SDPAttributeList and FrozenSDPAttributeList
o BaseSDPAttribute, SDPAttribute and FrozenSDPAttribute

5. Audio handling classes:
o AudioMixer
o MixerPort
o WaveFile
o RecordingWaveFile
o ToneGenerator

6. Media transport handling classes, using the functionality built into PJMEDIA:
o RTPTransport
o AudioTransport

7. SIP signalling related classes:
o Request and IncomingRequest: low-level transaction support
o Invitation: INVITE-dialog support
o Subscription and IncomingSubscription: SUBSCRIBE-dialog support

(including NOTIFY handling within the SUBSCRIBE dialog)
o Referral and IncomingReferral: REFER-dialog support (including NOTIFY

handling within the dialog)
o
o Registration: Python object based on Request for REGISTER support

SIP	 SIMPLE	 CLIENT	 SDK 195

 195

o Message: Python object based on Request for MESSAGE support
o Publication: Python object based on Request for PUBLISH support

8. Exceptions:
o SIPCoreError: generic error used throught the core
o PJSIPError: subclass of SIPCoreError which offers more information

related to errors from PJSIP
o PJSIPTLSError: subclass of PJSIPError to distinguish between TLS-related

errors and the rest
o SIPCoreInvalidStateError: subclass of SIPCoreError used by objects which

are based on a state-machine

Most of the objects cannot be used until the Engine has been started. The following
diagram illustrates these classes:

Most of the SIP core does not allow duck-typing due to the nature of the integration
between it and PJSIP. If these checks had not been employed, any errors could have
resulted in a segmentation fault and a core dump. This also explains why several
objects have a Frozen counterpart: the frozen objects are simply immutable versions
of their non-frozen variants which make sure that low-level data is kept consistent
and cannot be modified from Python. The Base versions are just base classes for the

 196

frozen and non-frozen versions provided mostly for convinience: they cannot be
instantiated.

SIP	 SIMPLE	 CLIENT	 SDK 197

 197

Integration
The core itself has one Python dependency, the application module, which in turn
depends on the zope.interface module. These modules should be present on the
system before the core can be used. An application that uses the SIP core must use
the notification system provided by the application module in order to receive
notifications from it. It does this by creating one or more classes that act as an
observer for particular messages and registering it with the NotificationCenter, which
is a singleton class. This means that any call to instance an object from this class will
result in the same object. As an example, this bit of code will create an observer for
logging messages only:

from zope.interface import implements
from application.notification import NotificationCenter, IObserver

class SIPEngineLogObserver(object):
 implements(IObserver)

 def handle_notification(self, notification):
 print "%(timestamp)s (%(level)d) %(sender)14s: %(message)s" %
notification.data.__dict__

log_observer = SIPEngineLogObserver()
notification_center = NotificationCenter()
notification_center.add_observer(log_observer, name="SIPEngineLog")

Each notification object has three attributes:

sender

The object that sent the notification. For generic notifications the sender will be
the Engine instance, otherwise the relevant object.

name

The name describing the notification. Most of the notifications in the core have
the prefix "SIP".

data

An instance of application.notification.NotificationData or a subclass of it. The
attributes of this object provide additional data about the notification.
Notifications described in this document will also have the data attributes
described.

Besides setting up the notification observers, the application should import the
relevant objects from the sipsimple.core module. It can then instantiate the Engine
class, which is also a singleton, and start the PJSIP worker thread by calling
Engine.start(), optionally providing a number of initialization options. Most of these
options can later be changed at runtime, by setting attributes of the same name on
the Engine object. The application may then instantiate one of the SIP primitive
classes and perform operations on it.

 198

When starting the Engine class, the application can pass a number of keyword
arguments that influence the behaviour of the SIP endpoint. For example, the SIP
network ports may be set through the local_udp_port, local_tcp_port and
local_tls_port arguments. The UDP/RTP ports are described by a range of ports
through rtp_port_range, two of which will be randomly selected for each
RTPTransport object and effectively each audio stream.

The methods called on the SIP primitive objects and the Engine object (proxied to
the PJSIPUA instance) may be called from any thread. They will return immediately
and any delayed result, such as results depending on network traffic, will be returned
later using a notification. In this manner the SIP core continues the asynchronous
pattern of PJSIP. If there is an error in processing the request, an instance of
SIPCoreError, or its subclass PJSIPError will be raised. The former will be raised
whenever an error occurs inside the core, the latter whenever an underlying PJSIP
function returns an error. The PJSIPError object also contains a status attribute,
which is the PJSIP errno as an integer.

As a very basic example, one can REGISTER for a sip account by typing the following
lines on a Python console:

from sipsimple.core import ContactHeader, Credentials, Engine,
Registration, RouteHeader, SIPURI
e = Engine()
e.start()
identity = FromHeader(SIPURI(user="alice", host="example.com"),
display_name="Alice")
cred = Credentials("alice", "mypassword")
reg = Registration(identity, credentials=cred)
reg.register(ContactHeader(SIPURI("127.0.0.1",port=12345)),
RouteHeader(SIPURI("1.2.3.4", port=5060)))

Note that in this example no observer for notifications from this Registration object
are registered, so the result of the operation cannot be seen. Also note that this will
not keep the registration registered when it is about to expire, as it is the
application's responsibility. See the Registration documentation for more details.

Another convention that is worth mentioning at this point is that the SIP core will
never perform DNS lookups. For the sake of flexibility, it is the responsibility of the
application to do this and pass the result to SIP core objects using the RouteHeader
object, indicating the destination IP address, port and transport the resulting SIP
request should be sent to. The {{{sipsimple.lookup}}} module of the middleware
can be used to perform DNS lookups according to RFC3263.

SIP	 SIMPLE	 CLIENT	 SDK 199

 199

Components

 200

Engine
As explained above, this singleton class needs to be instantiated by the application
using the SIP core of sipsimple and represents the whole SIP core stack. Once the
start() method is called, it instantiates the core.PJSIPUA object and will proxy
attribute and methods from it to the application.

attributes

default_start_options (class attribute)

This dictionary is a class attribute that describes the default values for the
initialization options passed as keyword arguments to the start() method. Consult
this method for documentation of the contents.

is_running

A boolean property indicating if the Engine is running and if it is safe to try calling
any proxied methods or attributes on it.

methods

__init__(self)

This will either create the Engine if it is called for the first time or return the one
Engine instance if it is called subsequently.

start(self, **kwargs)

Initialize all PJSIP libraries based on the keyword parameters provided and start the
PJSIP worker thread. If this fails an appropriate exception is raised. After the Engine
has been started successfully, it can never be started again after being stopped. The
keyword arguments will be discussed here. Many of these values are also readable
as (proxied) attributes on the Engine once the start() method has been called. Many
of them can also be set at runtime, either by modifying the attribute or by calling a
particular method. This will also be documented for each argument in the following
list of options.

SIP	 SIMPLE	 CLIENT	 SDK 201

 201

udp_port: (Default: 0)

The local UDP port to listen on for UDP datagrams. If this is 0, a random port
will be chosen. If it is None, the UDP transport is disabled, both for incoming and
outgoing traffic. As an attribute, this value is read-only, but it can be changed at
runtime using the set_udp_port() method.

tcp_port: (Default: 0)

The local TCP port to listen on for new TCP connections. If this is 0, a random
port will be chosen. If it is None, the TCP transport is disabled, both for incoming
and outgoing traffic. As an attribute, this value is read-only, but it can be
changed at runtime using the set_tcp_port() method.

tls_port: (Default: 0)

The local TCP port to listen on for new TLS over TCP connections. If this is 0, a
random port will be chosen. If it is None, the TLS transport is disabled, both for
incoming and outgoing traffic. As an attribute, this value is read-only, but it can
be changed at runtime using the set_tls_options() method, as internally the TLS
transport needs to be restarted for this operation.

tls_protocol: (Default: "TLSv1")

This string describes the (minimum) TLS protocol that should be used. Its values
should be either None, "SSLv2", "SSLv23", "SSLv3" or "TLSv1". If None is
specified, the PJSIP default will be used, which is currently "TLSv1".

tls_verify_server: (Default: False)

This boolean indicates whether PJSIP should verify the certificate of the server
against the local CA list when making an outgoing TLS connection. As an
attribute, this value is read-only, but it can be changed at runtime using the
set_tls_options() method, as internally the TLS transport needs to be restarted
for this operation.

tls_ca_file: (Default: None)

This string indicates the location of the file containing the local list of CA
certificates, to be used for TLS connections. If this is set to None, no CA
certificates will be read. As an attribute, this value is read-only, but it can be
changed at runtime using the set_tls_options() method, as internally the TLS
transport needs to be restarted for this operation.

tls_cert_file: (Default: None)

This string indicates the location of a file containing the TLS certificate to be
used for TLS connections. If this is set to None, no certificate file will be read. As
an attribute, this value is read-only, but it can be changed at runtime using the
set_tls_options() method, as internally the TLS transport needs to be restarted
for this operation.

tls_privkey_file: (Default: None)

This string indicates the location of a file containing the TLS private key
associated with the above mentioned certificated to be used for TLS connections.
If this is set to None, no private key file will be read. As an attribute, this value
is read-only, but it can be changed at runtime using the set_tls_options()
method, as internally the TLS transport needs to be restarted for this operation.

tls_timeout: (Default: 1000)

 202

The timeout value for a TLS negotiation in milliseconds. Note that this value
should be reasonably small, as a TLS negotiation blocks the whole PJSIP polling
thread. As an attribute, this value is read-only, but it can be changed at runtime
using the set_tls_options() method, as internally the TLS transport needs to be
restarted for this operation.

user_agent: (Default: "sipsimple-%version-pjsip-%pjsip_version-
r%pjsip_svn_revision")

This value indicates what should be set in the User-Agent header, which is
included in each request or response sent. It can be read and set directly as an
attribute at runtime.

log_level: (Default: 5)

This integer dictates the maximum log level that may be reported to the
application by PJSIP through the SIPEngineLog notification. By default the
maximum amount of logging information is reported. This value can be read and
set directly as an attribute at runtime.

trace_sip: (Default: False)

This boolean indicates if the SIP core should send the application SIP messages
as seen on the wire through the SIPEngineSIPTrace notification. It can be read
and set directly as an attribute at runtime.

rtp_port_range: (Default: (40000, 40100))

This tuple of two integers indicates the range to select UDP ports from when
creating a new RTPTransport object, which is used to transport media. It can be
read and set directly as an attribute at runtime, but the ports of previously
created RTPTransport objects remain unaffected.

codecs: (Default: ["speex", "G722", "PCMU", "PCMA", "iLBC", "GSM"])

This list specifies the codecs to use for audio sessions and their preferred order.
It can be read and set directly as an attribute at runtime. Note that this global
option can be overridden by an argument passed to AudioTransport.__init__().
The strings in this list is case insensitive.

events: (Default: <some sensible events>)

PJSIP needs a mapping between SIP SIMPLE event packages and content types.
This dictionary provides some default packages and their event types. As an
attribute, this value is read-only, but it can be changed at runtime using the
add_event() method.

incoming_events: (Default: set())

A list that specifies for which SIP SIMPLE event packages the application wishes
to receive IncomingSubscribe objects. When a SUBSCRIBE request is received
containing an event name that is not in this list, a 489 "Bad event" response is
internally generated. When the event is in the list, an IncomingSubscribe object
is created based on the request and passed to the application by means of a
notification. Note that each of the events specified here should also be a key in
the events dictionary argument. As an attribute, this value is read-only, but it
can be changed at runtime using the add_incoming_event() and
remove_incoming_event() methods.

incoming_requests: (Default: set())

SIP	 SIMPLE	 CLIENT	 SDK 203

 203

A set of methods for which IncomingRequest objects are created and sent to the
application if they are received. Note that receiving requests using the INVITE,
SUBSCRIBE, ACK or BYE methods in this way is not allowed. Requests using the
OPTIONS or MESSAGE method are handled internally, but may be overridden.

stop(self)

Stop the PJSIP worker thread and unload all PJSIP libraries. Note that after this
all references to SIP core objects can no longer be used, these should be
properly removed by the application itself before stopping the Engine. Also note
that, once stopped the Engine cannot be started again. This method is
automatically called when the Python interpreter exits.

proxied attributes

Besides all the proxied attributes described for the __init__ method above, thse
other attributes are provided once the Engine has been started.

input_devices

This read-only attribute is a list of strings, representing all audio input devices on the
system that can be used. One of these device names can be passed as the
input_device argument when creating a AudioMixer object.

output_devices

This read-only attribute is a list of strings, representing all audio output devices on
the system that can be used. One of these device names can be passed as the
output_device argument when creating a AudioMixer object.

sound_devices

This read-only attribute is a list of strings, representing all audio sound devices on
the system that can be used.

available_codecs

A read-only list of codecs available in the core, regardless of the codecs configured
through the codecs attribute.

proxied methods

add_event(self, event, accept_types)

Couple a certain event package to a list of content types. Once added it cannot be
removed or modified.

 204

add_incoming_event(self, event)

Adds a SIP SIMPLE event package to the set of events for which the Engine should
create an IncomingSubscribe object when a SUBSCRIBE request is received. Note
that this event should be known to the Engine by means of the events attribute.

remove_incoming_event(self, event)

Removes an event from the incoming_events attribute. Incoming SUBSCRIBE
requests with this event package will automatically be replied to with a 489 "Bad
Event" response.

add_incoming_request(self, method)

Add a method to the set of methods for which incoming requests should be turned
into IncomingRequest objects. For the rules on which methods are allowed, see the
description of the Engine attribute above.

remove_incoming_request(self, method)

Removes a method from the set of methods that should be received.

detect_nat_type(self, stun_server_address, stun_server_port=3478,
user_data=None)

Will start a series of STUN requests which detect the type of NAT this host is behind.
The stun_server_address parameter indicates the IP address or hostname of the
STUN server to be used and stun_server_port specifies the remote UDP port to use.
When the type of NAT is detected, this will be reported back to the application by
means of a SIPEngineDetectedNATType notification, including the user_data object
passed with this method.

set_udp_port(self, value)

Update the local_udp_port attribute to the newly specified value.

set_tcp_port(self, value)

Update the local_tcp_port attribute to the newly specified value.

set_tls_options(self, local_port=None, protocol="TLSv1",
verify_server=False, ca_file=None, cert_file=None,
privkey_file=None, timeout=1000)

Calling this method will (re)start the TLS transport with the specified arguments, or
stop it in the case that the local_port argument is set to None. The semantics of the
arguments are the same as on the start() method.

SIP	 SIMPLE	 CLIENT	 SDK 205

 205

notifications

Notifications sent by the Engine are notifications that are related to the Engine itself
or unrelated to any SIP primitive object. They are described here including the data
attributes that is included with them.

SIPEngineWillStart

This notification is sent when the Engine is about to start.

timestamp:

A datetime.datetime object indicating when the notification was sent.

SIPEngineDidStart

This notification is sent when the Engine is has just been started.

timestamp:

A datetime.datetime object indicating when the notification was sent.

SIPEngineDidFail

This notification is sent whenever the Engine has failed fatally and either cannot start
or is about to stop. It is not recommended to call any methods on the Engine at this
point.

timestamp:

A datetime.datetime object indicating when the notification was sent.

SIPEngineWillEnd

This notification is sent when the Engine is about to stop because the application
called the stop() method. Methods on the Engine can be called at this point, but
anything that has a delayed result will probably not return any notification.

timestamp:

A datetime.datetime object indicating when the notification was sent.

SIPEngineDidEnd

This notification is sent when the Engine was running and is now stopped, either
because of failure or because the application requested it.

timestamp:

A datetime.datetime object indicating when the notification was sent.

SIPEngineLog

 206

This notification is a wrapper for PJSIP logging messages. It can be used by the
application to output PJSIP logging to somewhere meaningful, possibly doing filtering
based on log level.

timestamp:

A datetime.datetime object representing the time when the log message was
output by PJSIP.

sender:

The PJSIP module that originated this log message.

level:

The logging level of the message as an integer. Currently this is 1 through 5, 1
being the most critical.

message:

The actual log message.

SIPEngineSIPTrace

Will be sent only when the do_siptrace attribute of the Engine instance is set to True.
The notification data attributes will contain the SIP messages as they are sent and
received on the wire.

timestamp:

A datetime.datetime object indicating when the notification was sent.

received:

A boolean indicating if this message was sent from or received by PJSIP (i.e. the
direction of the message).

source_ip:

The source IP address as a string.

source_port:

The source port of the message as an integer.

destination_ip:

The destination IP address as a string.

source_port:

The source port of the message as an integer.

data:

The contents of the message as a string.

For received message the destination_ip and for sent messages the source_ip may
not be reliable.

SIPEngineDetectedNATType

SIP	 SIMPLE	 CLIENT	 SDK 207

 207

This notification is sent some time after the application request the NAT type this
host behind to be detected using a STUN server. Note that there is no way to
associate a request to do this with a notification, although every call to the
detect_nat_type() method will generate exactly one notification.

timestamp:

A datetime.datetime object indicating when the notification was sent.

succeeded:

A boolean indicating if the NAT detection succeeded.

user_data:

The user_data argument passed while calling the detect_nat_type() method.
This can be any object and could be used for matching requests to responses.

nat_type:

A string describing the type of NAT found. This value is only present if NAT
detection succeeded.

error:

A string indicating the error that occurred while attempting to detect the type of
NAT. This value only present if NAT detection did not succeed.

SIPEngineGotException

This notification is sent whenever there is an unexpected exception within the PJSIP
working thread. The application should show the traceback to the user somehow. An
exception need not be fatal, but if it is it will be followed by a SIPEngineDidFail
notification.

timestamp:

A datetime.datetime object indicating when the notification was sent.

traceback:

A string containing the traceback of the exception. In general this should be
printed on the console.

SIPEngineGotMessage

This notification is sent whenever the Engine receives a MESSAGE request.

 208

request_uri:

The request URI of the MESSAGE request as a SIPURI object.

from_header:

The From header of the MESSAGE request as a FrozenFromHeader object.

to_header:

The To header of the MESSAGE request as a FrozenToHeader object.

content_type:

The Content-Type header value of the MESSAGE request as a ContentType
object.

headers:

The headers of the MESSAGE request as a dict. Each SIP header is represented
in its parsed for as long as PJSIP supports it. The format of the parsed value
depends on the header.

body:

The body of the MESSAGE request as a string, or None if no body was included.

timestamp:

A datetime.datetime object indicating when the notification was sent.

SIP	 SIMPLE	 CLIENT	 SDK 209

 209

SIPURI
These are helper objects for representing a SIP URI. This object needs to be used
whenever a SIP URI should be specified to the SIP core. It supports comparison to
other SIPURI objects using the == and != expressions. As all of its attributes are set
by the __init__ method, the individual attributes will not be documented here. The
FrozenSIPURI object does not allow any of its attributes to be changed after
initialization.

methods

__init__(self, host, user=None, port=None, display=None,
secure=False, parameters=None, headers=None)

Creates the SIPURI object with the specified parameters as attributes. host is the
only mandatory attribute.

host:

The host part of the SIP URI as a string.

user:

The username part of the SIP URI as a string, or None if not set.

port:

The port part of the SIP URI as an int, or None or 0 if not set.

display:

The optional display name of the SIP URI as a string, or None if not set.

secure:

A boolean indicating whether this is a SIP or SIPS URI, the latter being indicated
by a value of True.

parameters:

The URI parameters. represented by a dictionary.

headers:

The URI headers, represented by a dictionary.

__str__(self)

The special Python method to represent this object as a string, the output is the
properly formatted SIP URI.

new(cls, sipuri)

Classmethod that returns an instance of the class on which it has been called which
is a copy of the sipuri object (which must be either a SIPURI or a FrozenSIPURI).

 210

parse(cls, uri_str)

Classmethod that returns an instance of the class on which it has been called which
is represents the parsed version of the URI provided as a string. A SIPCoreError is
raised if the string is invalid or if the Engine has not been started yet.

matches(self, address)

This method returns True or False depending on whether the string address contains
a SIP address whose components are a subset of the components of self.

For example:

SIPURI.parse('sip:alice@example.org:54321;transport=tls').matches('alic
e@example.org')

returns True while

SIPURI.parse('sip:alice@example.org;transport=tls').matches('sips:alice
@example.org')

returns False.

SIP	 SIMPLE	 CLIENT	 SDK 211

 211

Credentials
The Credentials and FrozenCredentails simple objects represent authentication
credentials for a particular SIP account. These can be included whenever creating a
SIP primitive object that originates SIP requests. The attributes of this object are the
same as the arguments to the __init__ method. Note that the domain name of the
SIP account is not stored on this object.

methods

__init__(self, username, password)

Creates the Credentials object with the specified parameters as attributes. Each of
these attributes can be accessed and changed on the object once instanced.

username:

A string representing the username of the account for which these are the
credentials.

password:

The password for this SIP account as a string.

new(cls, credentials)

Classmethod that returns an instance of the class on which it has been called which
is a copy of the credentials object (which must be either a Credentials or a
FrozenCredentials).

 212

Invitation
The Invitation class represents an INVITE session, which governs a complete session
of media exchange between two SIP endpoints from start to finish. It is implemented
to be agnostic to the media stream or streams negotiated, which is achieved by
using the SDPSession class and its companion classes, which directly represents the
parsed SDP. The Invitation class represents both incoming and outgoing sessions.

The state machine contained in each Invitation object is based on the one used by
the underlying PJSIP pjsip_inv_session object. In order to represent re-INVITEs and
user-requested disconnections, three more states have been added to this state
machine. The progression through this state machine is fairly linear and is dependent
on whether this is an incoming or an outgoing session. State changes are triggered
either by incoming or by outgoing SIP requests and responses. The states and the
transitions between them are shown in the following diagram:

SIP	 SIMPLE	 CLIENT	 SDK 213

 213

The state changes of this machine are triggered by the following:

1. An Invitation object is newly created, either by the application for an outgoing
session, or by the core for an incoming session.

2. The application requested an outgoing session by calling the send_invite()
method and and initial INVITE request is sent.

3. A new incoming session is received by the core. The application should look
out for state change to this state in order to be notified of new incoming
sessions.

4. A provisional response (1xx) is received from the remove party.
5. A provisional response (1xx) is sent to the remote party, after the application

called the respond_to_invite_provisionally() method.
6. A positive final response (2xx) is received from the remote party.
7. A positive final response (2xx) is sent to the remote party, after the

application called the accept_invite() method.
8. A positive final response (2xx) is sent or received, depending on the

orientation of the session.
9. An ACK is sent or received, depending on the orientation of the session. If the

ACK is sent from the local to the remote party, it is initiated by PJSIP, not by
a call from the application.

10. The local party sent a re-INVITE to the remote party by calling the
send_reinvite() method.

11. The remote party has sent a final response to the re-INVITE.
12. The remote party has sent a re-INVITE.
13. The local party has responded to the re-INVITE by calling the

respond_to_reinvite() method.
14. The application requests that the session ends by calling the end() method.
15. A response is received from the remote party to whichever message was sent

by the local party to end the session.
16. A message is received from the remote party which ends the session.

The application is notified of a state change in either state machine through the
SIPInvitationChangedState notification, which has as data the current and previous
states. If the event is triggered by and incoming message, extensive data about that
message, such as method/code, headers and body, is also included with the
notification. The application should compare the previous and current states and
perform the appropriate action.

An Invitiation object also emits the SIPInvitationGotSDPUpdate notification, which
indicates that SDP negotiation between the two parties has been completed. This will
occur (at least) once during the initial session negotiation steps, during re-INVITEs in
both directions and whenever an UPDATE request is received. In the last case, the
Invitation object will automatically include the current local SDP in the response.

attributes

state

The state the Invitation state machine is currently in. See the diagram above for
possible states. This attribute is read-only.

 214

sub_state

The sub-state the Invitation state machine is currently in. See the diagram above for
possible states. This attribute is read-only.

directing

A string with the values "incoming" or "outgoing" depending on the direction of the
original INVITE request.

credentials

The SIP credentials needed to authenticate at the SIP proxy in the form of a
FrozenCredentials object. If this Invitation object represents an incoming INVITE
session this attribute will be None. On an outgoing session this attribute will be None
if it was not specified when the object was created. This attribute is set on object
instantiation and is read-only.

from_header

The From header of the caller represented by a FrozenFromHeader object. If this is
an outgoing INVITE session, this is the from_header from the send_invite() method.
Otherwise the URI is taken from the From: header of the initial INVITE. This attribute
is set on object instantiation and is read-only.

to_header

The To header of the callee represented by a FrozenToHeader object. If this is an
outgoing INVITE session, this is the to_header from the send_invite() method.
Otherwise the URI is taken from the To: header of the initial INVITE. This attribute is
set on object instantiation and is read-only.

local_identity

The From or To header representing the local identity used in this session. If the
original INVITE was incoming, this is the same as to_header, otherwise it will be the
same as from_header.

remote_identity

The From or To header representing the remote party in this session. If the original
INVITE was incoming, this is the same as from_header, otherwise it will be the same
as to_header.

route_header

The outbound proxy that was requested to be used in the form of a
FrozenRouteHeader object, including the desired transport. If this Invitation object

SIP	 SIMPLE	 CLIENT	 SDK 215

 215

represents an incoming INVITE session this attribute will always be None. This
attribute is set on object instantiation and is read-only.

call_id

The call ID of the INVITE session as a read-only string. In the NULL and
DISCONNECTED states, this attribute is None.

transport

A string indicating the transport used for the application. This can be "udp", "tcp" or
"tls".

local_contact_header

The Contact header that the local side provided to the remote side within this INVITE
session as a FrozenContactHeader object. Note that this can either be set on object
creation or updated using the send_reinvite() method.

remote_contact_header

The Contact header that the remote side provided to us within this INVITE session as
a FrozenContactHeader object.

call_id

A string representing the Call-Id header value of this INVITE dialog.

remote_user_agent

A string representing the remote user agent taken from the User-Agent or Server
headers (depending on the direction of the original INVITE).

sdp.proposed_local

The currently proposed sdp by the local party in the form of a FrozenSDPSession
object. This attribute is None when an SDP proposal is not in progress.

sdp.proposed_remote

The currently proposed sdp by the remote party in the form of a FrozenSDPSession
object. This attribute is None when an SDP proposal is not in progress.

sdp.active_local

The currently active sdp of the local party in the form of a FrozenSDPSession object.
This attribute is None if no SDP proposal has succeeded before.

 216

sdp.active_remote

The currently active sdp of the remote party in the form of a FrozenSDPSession
object. This attribute is None if no SDP proposal has succeeded before.

peer_address

This read-only attribute contains the remote endpoint IP and port information. It can
be accessed by accessing this object's ip and port attributes.

methods

__init__(self)

Creates a new Invitation object.

send_invite(self, request_uri, from_header, to_header,
route_header, contact_header, sdp, credentials=None,
extra_headers=[], timeout=None)

request_uri:

Request URI to be set inthe outgoing INVITE request.

from_header:

The identity of the local account in the form of a FromHeader object.

to_header:

The identity we want to send the INVITE to, represented as a ToHeader object.

route_header:

The outbound proxy to use in the form of a RouteHeader object. This includes
the desired transport to use.

contact_header:

The Contact header to include in the INVITE request, a ContactHeader object.

sdp:

The SDP to send as offer to the remote party.

credentials:

The optional SIP credentials needed to authenticate at the SIP proxy in the form
of a Credentials object.

extra_headers:

Any extra headers that should be included in the INVITE request in the form of a
list of header objects.

timeout:

How many seconds to wait for the remote party to reply before changing the
state to DISCONNECTED and internally replying with a 408, as an int or a float.

SIP	 SIMPLE	 CLIENT	 SDK 217

 217

If this is set to None, the default PJSIP timeout will be used, which appears to be
slightly longer than 30 seconds.

send_response(self, code, reason, contact_header, sdp,
extra_headers)

Send a response to a INVITE request.

code:

The code of the response to use as an int.

reason:

The reason of the response as a str.

contact_header:

The Contact header to include in the response, a ContactHeader object.

sdp:

The SDP to send as offer/response to the remote party.

extra_headers:

Any extra headers that should be included in the response in the form of a list of
header objects.

send_reinvite(self, contact_header=None, sdp=None,
extra_header=[])

contact_header:

The Contact header if it needs to be changed by the re-INVITE or None if it
shouldn't be changed; a BaseContactHeader object.

sdp:

The SDP to send as offer to the remote party or None if the re-INVITE should
not change the SDP; a BaseSDPSession object.

extra_headers:

Any extra headers that should be included in the response in the form of a list of
header objects.

cancel_reinvite(self)

Send a CANCEL after a re-INVITE has been sent to cancel the action of the re-
INVITE.

end(self, extra_headers=[], timeout=None)

This moves the INVITE state machine into the DISCONNECTING state by sending the
necessary SIP request. When a response from the remote party is received, the state

 218

machine will go into the DISCONNECTED state. Depending on the current state, this
could be a CANCEL or a BYE request.

extra_headers:

Any extra headers that should be included in the request or response in the form
of a dict.

timeout:

How many seconds to wait for the remote party to reply before changing the
state to DISCONNECTED, as an int or a float. If this is set to None, the default
PJSIP timeout will be used, which currently appears to be 3.5 seconds for an
established session.

notifications

SIPInvitationChangedState

This notification is sent by an Invitation object whenever its state machine changes
state.

timestamp:

A datetime.datetime object indicating when the notification was sent.

prev_state:

The previous state of the INVITE state machine.

prev_sub_state:

The previous sub-state of the INVITE state machine.

state:

The new state of the INVITE state machine, which may be the same as the
previous state.

sub_state:

The new sub-state of teh INVITE state machine, which may be the same as the
previous sub-state.

method: (only if the state change got triggered by an incoming SIP request)

The method of the SIP request as a string.

request_uri: (only if the state change got triggered by an incoming SIP
request)

The request URI of the SIP request as a SIPURI object.

code: (only if the state change got triggered by an incoming SIP response or
internal timeout or error)

The code of the SIP response or error as an int.

reason: (only if the state change got triggered by an incoming SIP response
or internal timeout or error)

The reason text of the SIP response or error as a string.

headers: (only if the state change got triggered by an incoming SIP request

SIP	 SIMPLE	 CLIENT	 SDK 219

 219

or response)

The headers of the SIP request or response as a dict. Each SIP header is
represented in its parsed for as long as PJSIP supports it. The format of the
parsed value depends on the header.

body: (only if the state change got triggered by an incoming SIP request or
response)

The body of the SIP request or response as a string, or None if no body was
included. The content type of the body can be learned from the Content-Type:
header in the headers argument.

SIPInvitationGotSDPUpdate

This notification is sent by an Invitation object whenever SDP negotiation has been
performed. It should be used by the application as an indication to start, change or
stop any associated media streams.

timestamp:

A datetime.datetime object indicating when the notification was sent.

succeeded:

A boolean indicating if the SDP negotiation has succeeded.

error: (only if SDP negotiation did not succeed)

A string indicating why SDP negotiation failed.

local_sdp: (only if SDP negotiation succeeded)

A SDPSession object indicating the local SDP that was negotiated.

remote_sdp: (only if SDP negotiation succeeded)

A SDPSession object indicating the remote SDP that was negotiated.

 220

SDPSession
SDP stands for Session Description Protocol. Session Description Protocol (SDP) is a
format for describing streaming media initialization parameters in an ASCII string.
SDP is intended for describing multimedia communication sessions for the purposes
of session announcement, session invitation, and other forms of multimedia session
initiation. It is an IETF standard described by RFC 4566. RFC 3264 defines an
Offer/Answer Model with the Session Description Protocol (SDP), a mechanism by
which two entities can make use of the Session Description Protocol (SDP) to arrive
at a common view of a multimedia session between them.

SDPSession and FrozenSDPSession objects directly represent the contents of a SDP
body, as carried e.g. in an INVITE request, and is a simple wrapper for the PJSIP
pjmedia_sdp_session structure. They can be passed to those methods of an
Invitation object that result in transmission of a message that includes SDP, or are
passed to the application through a notification that is triggered by reception of a
message that includes SDP. A (Frozen)SDPSession object may contain
(Frozen)SDPMediaStream, (Frozen)SDPConnection and (Frozen)SDPAttribute
objects. It supports comparison to other (Frozen)SDPSession objects using the ==
and != expressions. As all the attributes of the (Frozen)SDPSession class are set by
attributes of the __init__ method, they will be documented along with that method.

methods

__init__(self, address, id=None, version=None, user="-",
net_type="IN", address_type="IP4", name=" ", info=None,
connection=None, start_time=0, stop_time=0, attributes=None,
media=None)

Creates the SDPSession object with the specified parameters as attributes. Each of
these attributes can be accessed and changed on the object once instanced.

SIP	 SIMPLE	 CLIENT	 SDK 221

 221

address:

The address that is contained in the "o" (origin) line of the SDP as a string.

id:

The session identifier contained in the "o" (origin) line of the SDP as an int. If
this is set to None on init, a session identifier will be generated.

version:

The version identifier contained in the "o" (origin) line of the SDP as an int. If
this is set to None on init, a version identifier will be generated.

user:

The user name contained in the "o" (origin) line of the SDP as a string.

net_type:

The network type contained in the "o" (origin) line of the SDP as a string.

address_type:

The address type contained in the "o" (origin) line of the SDP as a string.

name:

The contents of the "s" (session name) line of the SDP as a string.

info:

The contents of the session level "i" (information) line of the SDP as a string. If
this is None or an empty string, the SDP has no "i" line.

connection:

The contents of the "c" (connection) line of the SDP as a (Frozen)SDPConnection
object. If this is set to None, the SDP has no session level "c" line.

start_time:

The first value of the "t" (time) line of the SDP as an int.

stop_time:

The second value of the "t" (time) line of the SDP as an int.

attributes:

The session level "a" lines (attributes) in the SDP represented by a list of
(Frozen)SDPAttribute objects.

media:

The media sections of the SDP represented by a list of (Frozen)SDPMediaStream
objects.

new(cls, sdp_session)

Classmethod that returns an instance of the class on which it has been called which
is a copy of the sdp_session object (which must be either a SDPSession or a
FrozenSDPSession).

 222

attributes

has_ice_proposal

This read-only attribute returns True if the SDP contains any attributes which
indicate the existence of an ice proposal and False otherwise.

SIP	 SIMPLE	 CLIENT	 SDK 223

 223

SDPMediaStream
The SDPMediaStream and FrozenSDPMediaStream objects represent the contents of
a media section of a SDP body, i.e. a "m" line and everything under it until the next
"m" line. It is a simple wrapper for the PJSIP pjmedia_sdp_media structure. One or
more (Frozen)SDPMediaStream objects are usually contained in a
(Frozen)SDPSession object. It supports comparison to other (Frozen)SDPMedia
objects using the == and != expressions. As all the attributes of this class are set by
attributes of the __init__ method, they will be documented along with that method.

methods

__init__(self, media, port, transport, port_count=1,
formats=None, info=None, connection=None, attributes=None)

Creates the SDPMedia object with the specified parameters as attributes. Each of
these attributes can be accessed and changed on the object once instanced.

media:

The media type contained in the "m" (media) line as a string.

port:

The transport port contained in the "m" (media) line as an int.

transport:

The transport protocol in the "m" (media) line as a string.

port_count:

The port count in the "m" (media) line as an int. If this is set to 1, it is not
included in the SDP.

formats:

The media formats in the "m" (media) line represented by a list of strings.

info:

The contents of the "i" (information) line of this media section as a string. If this
is None or an empty string, the media section has no "i" line.

connection:

The contents of the "c" (connection) line that is somewhere below the "m" line
of this section as a (Frozen)SDPConnection object. If this is set to None, this
media section has no "c" line.

attributes:

The "a" lines (attributes) that are somewhere below the "m" line of this section
represented by a list of (Frozen)SDPAttribute objects.

new(cls, sdp_media)

 224

Classmethod that returns an instance of the class on which it has been called
which is a copy of the sdp_media object (which must be either a
SDPMediaStream or a FrozenSDPMediaStream).

attributes

direction

This is a convenience read-only attribute that goes through all the attributes of the
media section and returns the direction, which is either "sendrecv", "sendonly",
"recvonly" or "inactive". If none of these attributes is present, the default direction is
"sendrecv".

SIP	 SIMPLE	 CLIENT	 SDK 225

 225

SDPConnection
The SDPConnection and FrozenSDPConnection objects represents the contents of a
"c" (connection) line of a SDP body, either at the session level or for an individual
media stream. It is a simple wrapper for the PJSIP pjmedia_sdp_conn structure. A
(Frozen)SDPConnection object can be contained in a (Frozen)SDPSession object or
(Frozen)SDPMediaStream object. It supports comparison to other
(Frozen)SDPConnection objects using the == and != expressions. As all the
attributes of this class are set by attributes of the __init__ method, they will be
documented along with that method.

methods

__init__(self, address, net_type="IN", address_type="IP4")

Creates the SDPConnection object with the specified parameters as attributes. Each
of these attributes can be accessed and changed on the object once instanced.

address:

The address part of the connection line as a string.

net_type:

The network type part of the connection line as a string.

address_type:

The address type part of the connection line as a string.

new(cls, sdp_connection)

Classmethod that returns an instance of the class on which it has been called which
is a copy of the sdp_connection object (which must be either a SDPConnection or a
FrozenSDPConnection).

 226

SDPAttributeList

SDPAttributeList and FrozenSDPAttributeList are subclasses of list and frozenlist
respectively and are used as the types of the attributes attributes of
(Frozen)SDPSession and (Frozen)SDPMediaStream. They provide convinience
methods for accessing SDP attributes. Apart from the standard list and frozenlist
methods, they also provide the following:

__contains__(self, item)

If item is an instance of BaseSDPAttribute, the normal (frozen)list method is called.
Otherwise, the method returns whether or not item is in the list of the names of the
attributes. This allows tests such as the following to be possible:

 'ice-pwd' in sdp_session.attributes

getall(self, name)

Returns all the values of the attributes with the given name in a list.

getfirst(self, name, default=None)

Return the first value of the attribute with the given name, or default is no such
attribute exists.

SIP	 SIMPLE	 CLIENT	 SDK 227

 227

SDPAttribute
The SDPAttribute and FrozenSDPAttribute objects represent the contents of a "a"
(attribute) line of a SDP body, either at the session level or for an individual media
stream. It is a simple wrapper for the PJSIP pjmedia_sdp_attr structure. One or
more (Frozen)SDPAttribute objects can be contained in a (Frozen)SDPSession object
or (Frozen)SDPMediaStream object. It supports comparison to other
(Frozen)SDPAttribute objects using the == and != expressions. As all the attributes
of this class are set by attributes of the __init__ method, they will be documented
along with that method.

methods

__init__(self, name, value)

Creates the SDPAttribute object with the specified parameters as attributes. Each of
these attributes can be accessed and changed on the object once instanced.

name:

The name part of the attribute line as a string.

value:

The value part of the attribute line as a string.

new(cls, sdp_attribute)

Classmethod that returns an instance of the class on which it has been called which
is a copy of the sdp_attribute object (which must be either a SDPAttribute or a
FrozenSDPAttribute).

 228

RTPTransport
This object represents a transport for RTP media, the basis of which is a pair of UDP
sockets, one for RTP and one for RTCP. Internally it wraps a pjmedia_transport
object. Initially this object will only be used by the AudioTransport object, but in the
future it can also be used for video and Real-Time Text?. For this reason the
AudioTransport and RTPTransport are two distinct objects.

The RTPTransport object also allows support for ICE and SRTP functionality from
PJSIP. Because these features are related to both the UDP transport and the SDP
formatting, the SDP carried in SIP signaling message will need to "pass through" this
object during the SDP negotiation. The code using this object, which in most cases
will be the AudioTransport object, will need to call certain methods on the object at
appropriate times. This process of SDP negotiation is represented by the internal
state machine of the object, as shown in the following diagram:

The Real-time Transport Protocol (or RTP) defines a standardized packet format for
delivering audio and video over the Internet. It was developed by the Audio-Video
Transport Working Group of the IETF and published in RFC 3550. RTP is used in
streaming media systems (together with the RTSP) as well as in videoconferencing
and push to talk systems. For these it carries media streams controlled by Session
Initiation Protocol (SIP) signaling protocols, making it the technical foundation of the
Voice over IP industry.

SIP	 SIMPLE	 CLIENT	 SDK 229

 229

State changes are triggered by the following events:

1. The application calls the set_INIT() method after object creation and
ICE+STUN is not used.

2. The application calls the set_INIT() method after object creation and
ICE+STUN is used.

3. A successful STUN response is received from the STUN server.
4. The set_LOCAL() method is called.
5. The set_ESTABLISHED() method is called.
6. The set_INIT() method is called while the object is in the LOCAL or

ESTABLISHED state.

A method is called on the application, but in the meantime the Engine has stopped.
The object can no longer be used.

There was an error in getting the STUN candidates from the STUN server.

It would make sense to be able to use the object even if the STUN request fails (and
have ICE not include a STUN candidate), but for some reason the pjmedia_transport
is unusable once STUN negotiation has failed. This means that the RTPTransport
object is also unusable once it has reached the STUN_FAILED state. A workaround
would be destroy the RTPTransport object and create a new one that uses ICE
without STUN.

These states allow for two SDP negotiation scenarios to occur, represented by two
paths that can be followed through the state machine. In this example we will
assume that ICE with STUN is not used, as it is independent of the SDP negotiation
procedure.

The first scenario is where the local party generates the SDP offer. For a stream that
it wishes to include in this SDP offer, it instantiates a RTPTransport object. After
instantiation the object is initialized by calling the set_INIT() method and the local
RTP address and port can be fetched from it using the local_rtp_address and
local_rtp_port attributes respectively, which can be used to generate the local SDP in
the form of a SDPSession object. This local SDP then needs to be passed to the
set_LOCAL() method, which moves the state machine into the LOCAL state (note
that it needs the full object, not just the relevant SDPMediaStream object).
Depending on the options used for the RTPTransport instantiation (such as ICE and
SRTP), this may change the SDPSession object. This (possibly changed) SDPSession
object then needs to be passed to the Invitation object. After SDP negotiation is
completed, the application needs to pass both the local and remote SDP, in the form
of (Frozen)SDPSession objects, to the RTPTransport object using the
set_ESTABLISHED() method, moving the state machine into the ESTABLISHED state.
This will not change either of the (Frozen)SDPSession objects (which is why they can
also be frozen).

The second scenario is where the local party is offered a media stream in SDP and
wants to accept it. In this case a RTPTransport is also instantiated and initialized
using the set_INIT() method, and the application can generate the local SDP in
response to the remote SDP, using the local_rtp_address and local_rtp_port
attributes. Directly after this it should pass the generated local SDP and received
remote SDP, in the form of SDPSession objects, to the set_ESTABLISHED() method.
In this case the local SDP object may be changed, after which it can be passed to the
Invitation object.

 230

Whenever the RTPTransport object is in the LOCAL or ESTABLISHED states, it may
be reset to the INIT state to facilitate re-use of the existing transport and its
features. Before doing this however, the internal transport object must no longer be
in use.

methods

__init__(self, local_rtp_address=None, use_srtp=False,
srtp_forced=False, use_ice=False, ice_stun_address=None,
ice_stun_port=3478)

Creates a new RTPTransport object and opens the RTP and RTCP UDP sockets. If
additional features are requested, they will be initialized. After object instantiation, it
is either in the INIT or the WAIT_STUN state, depending on the values of the use_ice
and ice_stun_address arguments.

local_rtp_address:

Optionally contains the local IPv4 address to listen on. If this is not specified,
PJSIP will listen on all network interfaces.

use_srtp:

A boolean indicating if SRTP should be used. If this is set to True, SRTP
information will be added to the SDP when it passes this object.

srtp_forced:

A boolean indicating if use of SRTP is set to mandatory in the SDP. If this is set
to True and the remote party does not support SRTP, the SDP negotiation for
this stream will fail. This argument is relevant only if use_srtp is set to True.

use_ice:

A boolean indicating if ICE should be used. If this is set to True, ICE candidates
will be added to the SDP when it passes this object.

ice_stun_address:

A string indicating the address (IP address or hostname) of the STUN server that
should be used to add a STUN candidate to the ICE candidates. If this is set to
None no STUN candidate will be added, otherwise the object will be put into the
WAIT_STUN state until a reply, either positive or negative, is received from the
specified STUN server. When this happens a RTPTransportGotSTUNResponse
notification is sent. This argument is relevant only if use_ice is set to True.

ice_stun_address:

An int indicating the UDP port of the STUN server that should be used to add a
STUN candidate to the ICE candidates. This argument is relevant only if use_ice
is set to True and ice_stun_address is not None.

set_INIT(self)

SIP	 SIMPLE	 CLIENT	 SDK 231

 231

This moves the internal state machine into the INIT state. If the state machine
is in the LOCAL or ESTABLISHED states, this effectively resets the RTPTransport
object for re-use.

set_LOCAL(self, local_sdp, sdp_index)

This moves the the internal state machine into the LOCAL state.

local_sdp:

The local SDP to be proposed in the form of a SDPSession object. Note that this
object may be modified by this method.

sdp_index:

The index in the SDP for the media stream for which this object was created.

set_ESTABLISHED(self, local_sdp, remote_sdp, sdp_index)

This moves the the internal state machine into the ESTABLISHED state.

local_sdp:

The local SDP to be proposed in the form of a SDPSession object. Note that this
object may be modified by this method, but only when moving from the LOCAL
to the ESTABLISHED state.

remote_sdp:

The remote SDP that was received in in the form of a SDPSession object.

sdp_index:

The index in the SDP for the media stream for which this object was created.

attributes

state

Indicates which state the internal state machine is in. See the previous section for a
list of states the state machine can be in. This attribute is read-only.

local_rtp_address

The local IPv4 address of the interface the RTPTransport object is listening on and
the address that should be included in the SDP. If no address was specified during
object instantiation, PJSIP will take guess out of the IP addresses of all interfaces.
This attribute is read-only and will be None if PJSIP is not listening on the transport.

local_rtp_port

The UDP port PJSIP is listening on for RTP traffic. RTCP traffic will always be this port
plus one. This attribute is read-only and will be None if PJSIP is not listening on the
transport.

 232

remote_rtp_address_sdp

The remote IP address that was seen in the SDP. This attribute is read-only and will
be None unless the object is in the ESTABLISHED state.

remote_rtp_port_sdp

The remote UDP port for RTP that was seen in the SDP. This attribute is read-only
and will be None unless the object is in the ESTABLISHED state.

remote_rtp_address_ice

The remote IP address that was selected by the ICE negotation. This attribute is
read-only and will be None until the ICE negotation succeeds.

remote_rtp_port_ice

The remote port that was selected by the ICE negotation. This attribute is read-only
and will be None until the ICE negotation succeeds.

remote_rtp_address_received

The remote IP address from which RTP data was received. This attribute is read-only
and will be None unless RTP was actually received.

remote_rtp_port_received

The remote UDP port from which RTP data was received. This attribute is read-only
and will be None unless RTP was actually received.

use_srtp

A boolean indicating if the use of SRTP was requested when the object was
instantiated. This attribute is read-only.

force_srtp

A boolean indicating if SRTP being mandatory for this transport if it is enabled was
requested when the object was instantiated. This attribute is read-only.

srtp_active

A boolean indicating if SRTP encryption and decryption is running. Querying this
attribute only makes sense once the object is in the ESTABLISHED state and use of
SRTP was requested. This attribute is read-only.

SIP	 SIMPLE	 CLIENT	 SDK 233

 233

use_ice

A boolean indicating if the use of ICE was requested when the object was
instantiated. This attribute is read-only.

ice_active

A boolean indicating if ICE is being used. This attribute is read-only.

ice_stun_address

A string indicating the IP address of the STUN server that was requested to be used.
This attribute is read-only.

ice_stun_port

A string indicating the UDP port of the STUN server that was requested to be used.
This attribute is read-only.

local_rtp_candidate_type

Returns the ICE candidate type which has been selected for the local endpoint.

remote_rtp_candidate_type

Returns the ICE candidate type which has been selected for the remote endpoint.

notifications

RTPTransportDidInitialize

This notification is sent when a RTPTransport object has successfully initialized. If
STUN+ICE is not requested, this is sent immediately on set_INIT(), otherwise it is
sent after the STUN query has succeeded.

timestamp:

A datetime.datetime object indicating when the notification was sent.

RTPTransportDidFail

This notification is sent by a RTPTransport object that fails to retrieve ICE candidates
from the STUN server after set_INIT() is called.

 234

timestamp:

A datetime.datetime object indicating when the notification was sent.

reason:

A string describing the failure reason.

RTPTransportICENegotiationStateDidChange

This notification is sent to indicate the progress of the ICE negotiation.

state:

A string describing the current ICE negotiation state.

RTPTransportICENegotiationDidFail

This notification is sent when the ICE negotiation fails.

reason:

A string describing the failure reason of ICE negotation.

RTPTransportICENegotiationDidSucceed

This notification is sent when the ICE negotation succeeds.

chosen_local_candidates and chosen_remote_candidates:

Dictionaries with the following keys:
o rtp_cand_type: the type of the RTP candidate
o rtp_cand_ip: the IP address of the RTP candidate
o rtcp_cand_type: the type of the RTCP candidate
o rtcp_cand_ip: the IP address of teh RTCP candidate

duration:

The amount of time the ICE negotiation took.

local_candidates and remote_candidates:

Lists of tuples with the following elements:
o Item ID
o Component ID
o Address
o Component Type

connectivity_checks_results:

A list of tuples with the following elements:
o Item ID
o Component ID
o Source
o Destination
o Nomination
o State

SIP	 SIMPLE	 CLIENT	 SDK 235

 235

AudioTransport
This object represent an audio stream as it is transported over the network. It
contains an instance of RTPTransport and wraps a pjmedia_stream object, which in
turn manages the RTP encapsulation, RTCP session, audio codec and adaptive jitter
buffer. It also generates a SDPMediaStream object to be included in the local SDP.

The AudioTransport is an object that, once started, is connected to a AudioMixer
instance, and both produces and consumes sound.

Like the RTPTransport object there are two usage scenarios.

In the first scenario, only the RTPTransport instance to be used is passed to the
AudioTransport object. The application can then generate the SDPMediaStream
object by calling the get_local_media() method and should include it in the SDP
offer. Once the remote SDP is received, it should be set along with the complete local
SDP by calling the start() method, which will start the audio stream. The stream can
then be connected to the conference bridge.

In the other scenario the remote SDP is already known because it was received in an
SDP offer and can be passed directly on object instantiation. The local
SDPMediaStream object can again be generated by calling the get_local_media()
method and is to be included in the SDP answer. The audio stream is started directly
when the object is created.

Unlike the RTPTransport object, this object cannot be reused.

methods

__init__(self, mixer, transport, remote_sdp=None, sdp_index=0,
enable_silence_detection=True, codecs=None)

Creates a new AudioTransport object and start the underlying stream if the remote
SDP is already known.

 236

mixer:

The AudioMixer object that this object is to be connected to.

transport:

The transport to use in the form of a RTPTransport object.

remote_sdp:

The remote SDP that was received in the form of a SDPSession object.

sdp_index:

The index within the SDP of the audio stream that should be created.

enable_silence_detection:

Boolean that indicates if silence detection should be used for this audio stream.
When enabled, this AudioTransport object will stop sending audio to the remote
party if the input volume is below a certain threshold.

Codecs:

A list of strings indicating the codecs that should be proposed in the SDP of this
AudioTransport, in order of preference. This overrides the global codecs list set
on the Engine. The values of this list are case insensitive.

get_local_media(self, is_offer, direction="sendrecv")

Generates a SDPMediaStream object which describes the audio stream. This object
should be included in a SDPSession object that gets passed to the Invitation object.
This method should also be used to obtain the SDP to include in re-INVITEs and
replies to re-INVITEs.

is_offer:

A boolean indicating if the SDP requested is to be included in an offer. If this is False
it is to be included in an answer.

direction:

The direction attribute to put in the SDP.

start(self, local_sdp, remote_sdp, sdp_index,
no_media_timeout=10, media_check_interval=30)

This method should only be called once, when the application has previously sent an
SDP offer and the answer has been received.

SIP	 SIMPLE	 CLIENT	 SDK 237

 237

local_sdp:

The full local SDP that was included in the SDP negotiation in the form of a
SDPSession object.

remote_sdp:

The remote SDP that was received in the form of a SDPSession object.

sdp_index:

The index within the SDP of the audio stream.

no_media_timeout:

This argument indicates after how many seconds after starting the
AudioTransport the RTPAudioTransportDidNotGetRTP notification should be sent,
if no RTP has been received at all. Setting this to 0 disables this an all
subsequent RTP checks.

media_check_interval:

This indicates the interval at which the RTP stream should be checked, after it
has initially received RTP at after no_media_timeout seconds. It means that if
between two of these interval checks no RTP has been received, a
RTPAudioTransportDidNotGetRTP notification will be sent. Setting this to 0 will
disable checking the RTP at intervals. The initial check may still be performed if
its timeout is non-zero.

stop(self)

This method stops and destroys the audio stream encapsulated by this object. After
this it can no longer be used and should be deleted, while the RTPTransport object
used by it can be re-used for something else. This method will be called
automatically when the object is deleted after it was started, but this should not be
relied on because of possible reference counting issues.

send_dtmf(self, digit)

For a negotiated audio transport this sends one DTMF digit to the other party

digit:

A string of length one indicating the DTMF digit to send. This can be either a
digit, the pound sign (#), the asterisk sign (*) or the letters A through D.

update_direction(self, direction)

This method should be called after SDP negotiation has completed to update the
direction of the media stream.

 238

direction:

The direction that has been negotiated.

attributes

mixer

The AudioMixer object that was passed when the object got instantiated. This
attribute is read-only.

transport

The RTPTransport object that was passed when the object got instantiated. This
attribute is read-only.

slot

A read-only property indicating the slot number at which this object is attached to
the associated conference bridge. If the AudioTransport is not active (i.e. has not
been started), this attribute will be None.

volume

A writable property indicating the % of volume at which this object contributes audio
to the conference bridge. By default this is set to 100.

is_active

A boolean indicating if the object is currently sending and receiving audio. This
attribute is read-only.

is_started

A boolean indicating if the object has been started. Both this attribute and the
is_active attribute get set to True once the start() method is called, but unlike the
is_active attribute this attribute does not get set to False once stop() is called. This is
to prevent the object from being re-used. This attribute is read-only.

codec

Once the SDP negotiation is complete, this attribute indicates the audio codec that
was negotiated, otherwise it will be None. This attribute is read-only.

sample_rate

SIP	 SIMPLE	 CLIENT	 SDK 239

 239

Once the SDP negotiation is complete, this attribute indicates the sample rate of the
audio codec that was negotiated, otherwise it will be None. This attribute is read-
only.

direction

The current direction of the audio transport, which is one of "sendrecv", "sendonly",
"recvonly" or "inactive". This attribute is read-only, although it can be set using the
update_direction() method.

notifications

RTPAudioTransportGotDTMF

This notification will be sent when an incoming DTMF digit is received from the
remote party.

timestamp:

A datetime.datetime object indicating when the notification was sent.

digit:

The DTMF digit that was received, in the form of a string of length one. This can
be either a number or letters A through D.

RTPAudioTransportDidNotGetRTP

This notification will be sent when no RTP packets have been received from the
remote party for some time. See the start() method for a more exact description.

timestamp:

A datetime.datetime object indicating when the notification was sent.

got_any:

A boolean data attribute indicating if the AudioTransport every saw any RTP
packets from the remote party. In effect, if no RTP was received after
no_media_timeout seconds, its value will be False.

 240

Request
The sipsimple.core.Request object encapsulates a single SIP request transaction
from the client side, which includes sending the request, receiving the response and
possibly waiting for the result of the request to expire. Although this class can be
used by the application to construct and send an arbitrary SIP request, most
applications will use the classes for primitive requests provided in the sipsimple.core
module, which are built on top of one or several Request objects and deal with
instances of specific SIP methods (REGISTER, MESSAGE and PUBLISH).

The lifetime of this object is linear and is described by the following diagram:

The bar denotes which state the object is in and at the top are the notifications which
may be emitted at certain points in time. Directly after the object is instantiated, it
will be in the INIT state. The request will be sent over the network once its send()
method is called, moving the object into the IN_PROGRESS state.

On each provisional response that is received in reply to this request, the
SIPRequestGotProvisionalResponse notification is sent, with data describing the
response. Note that this may not occur at all if not provisional responses are
received. When the send() method has been called and it does not return an
exception, the object will send either a SIPRequestDidSucceed or a
SIPRequestDidFail notification. Both of these notifications include data on the
response that triggered it.

Note that a SIP response that requests authentication (401 or 407) will be handled
internally the first time, if a Credentials object was supplied. If this is the sort of
request that expires (detected by a Expires header in the response or a expires
parameter in the Contact header of the response), and the request was successful,
the object will go into the EXPIRING state. A certain amount of time before the result
of the request will expire, governed by the expire_warning_time class attribute and
the actual returned expiration time, a SIPRequestWillExpire notification will be sent.
This should usually trigger whomever is using this Request object to construct a new
Request for a refreshing operation.

When the Request actually expires, or when the EXPIRING state is skipped directly
after sending SIPRequestDidSucceed or SIPRequestDidFail, a SIPRequestDidEnd
notification will be sent.

SIP	 SIMPLE	 CLIENT	 SDK 241

 241

methods

__init__(self, method, request_uri, from_header, to_header,
request_uri, route_header, credentials=None, contact_header=None,
call_id=None, cseq=None, extra_headers=None, content_type=None,
body=None)

Creates a new Request object in the INIT state. The arguments to this method are
documented in the attributes section.

send(self, timeout=None)

Compose the SIP request and send it to the destination. This moves the Request
object into the IN_PROGRESS state.

timeout:

This can be either an int or a float, indicating in how many seconds the request
should timeout with an internally generated 408 response. This is is None, the
internal 408 is only triggered by the internal PJSIP transaction timeout. Note
that, even if the timeout is specified, the PJSIP timeout is also still valid.

end(self)

Terminate the transaction, whichever state it is in, sending the appropriate
notifications. Note that calling this method while in the INIT state does nothing.

attributes

expire_warning_time (class attribute)

The SIPRequestWillExpire notification will be sent halfway between the positive
response and the actual expiration time, but at least this amount of seconds before.
The default value is 30 seconds.

state

Indicates the state the Request object is in, in the form of a string. Refer to the
diagram above for possible states. This attribute is read-only.

method

The method of the SIP request as a string. This attribute is set on instantiation and is
read-only.

from_header

The FrozenFromHeader object to put in the From header of the request. This
attribute is set on instantiation and is read-only.

 242

to_header

The FrozenToHeader object to put in the To header of the request. This attribute is
set on instantiation and is read-only.

request_uri

The SIP URI to put as request URI in the request, in the form of a FrozenSIPURI
object. This attribute is set on instantiation and is read-only.

route_header

Where to send the SIP request to, including IP, port and transport, in the form of a
FrozenRouteHeader object. This will also be included in the Route header of the
request. This attribute is set on instantiation and is read-only.

credentials

The credentials to be used when challenged for authentication, represented by a
FrozenCredentials object. If no credentials were supplied when the object was
created this attribute is None. This attribute is set on instantiation and is read-only.

contact_header

The FrozenContactHeader object to put in the Contact header of the request. If this
was not specified, this attribute is None. It is set on instantiation and is read-only.

call_id

The Call-ID to be used for this transaction as a string. If no call id was specified on
instantiation, this attribute contains the generated id. This attribute is set on
instantiation and is read-only.

cseq

The sequence number to use in the request as an int. If no sequence number was
specified on instantiation, this attribute contains the generated sequence number.
Note that this number may be increased by one if an authentication challenge is
received and a Credentials object is given. This attribute is read-only.

extra_headers

Extra headers to include in the request as a frozenlist of header objects. This
attribute is set on instantiation and is read-only.

content_type

SIP	 SIMPLE	 CLIENT	 SDK 243

 243

What string to put as content type in the Content-Type headers, if the request
contains a body. If no body was specified, this attribute is None It is set on
instantiation and is read-only.

body

The body of the request as a string. If no body was specified, this attribute is None It
is set on instantiation and is read-only.

expires_in

This read-only property indicates in how many seconds from now this Request will
expire, if it is in the EXPIRING state. If this is not the case, this property is 0.

peer_address

This read-only attribute contains the remote endpoint IP and port information. It can
be accessed by accessing this object's ip and port attributes.

notifications

SIPRequestGotProvisionalResponse

This notification will be sent on every provisional response received in reply to the
sent request.

timestamp:

A datetime.datetime object indicating when the notification was sent.

code:

The SIP response code of the received provisional response as an int, which will
be in the 1xx range.

reason:

The reason text string included with the SIP response code.

headers:

The headers included in the provisional response as a dict, the values of which
are header objects.

body:

The body of the provisional response as a string, or None if there was no body.

SIPRequestDidSucceed

This notification will be sent when a positive final response was received in reply to
the request.

 244

timestamp:

A datetime.datetime object indicating when the notification was sent.

code:

The SIP response code of the received positive final response as an int, which
will be in the 2xx range.

reason:

The reason text string included with the SIP response code.

headers:

The headers included in the positive final response as a dict, the values of which
are header objects.

body:

The body of the positive final response as a string, or None if there was no body.

expires:

Indicates in how many seconds the Request will expire as an int. If it does not
expire and the EXPIRING state is skipped, this attribute is 0.

SIPRequestDidFail

This notification will be sent when a negative final response is received in reply to the
request or if an internal error occurs.

timestamp:

A datetime.datetime object indicating when the notification was sent.

code:

The SIP response code of the received negative final response as an int. This
could also be a response code generated by PJSIP internally, or 0 when an
internal error occurs.

reason:

The reason text string included with the SIP response code or error.

headers: (only if a negative final response was received)

The headers included in the negative final response as a dict, the values of
which are header objects, if this is what triggered the notification.

body: (only if a negative final response was received)

The body of the negative final response as a string, or None if there was no
body. This attribute is absent if no response was received.

SIPRequestWillExpire

This notification will be sent when a Request in the EXPIRING state will expire soon.

SIP	 SIMPLE	 CLIENT	 SDK 245

 245

timestamp:

A datetime.datetime object indicating when the notification was sent.

expires:

An int indicating in how many seconds from now the Request will actually expire.

SIPRequestDidEnd

This notification will be sent when a Request object enters the TERMINATED state
and can no longer be used.

timestamp:

A datetime.datetime object indicating when the notification was sent.

 246

IncomingRequest
This is a relatively simple object that can manage responding to incoming requests in
a single transaction. For this reason it does not handle requests that create a dialog.
To register methods for which requests should be formed into an IncomingRequest
object, the application should set the incoming_requests set attribute on the Engine.
Receiving INVITE, SUBSCRIBE, ACK and BYE through this object is not supported.

The application is notified of an incoming request through the
SIPIncomingRequestGotRequest notification. It can answer this request by calling the
answer method on the sender of this notification. Note that if the IncomingRequest
object gets destroyed before it is answered, a 500 response is automatically sent.

attributes

state

This read-only attribute indicates the state the object is in. This can be None if the
object was created by the application, essentially meaning the object is inert,
"incoming" or "answered".

methods

answer(self, code, reason=None, extra_headers=None)

Reply to the received request with a final response.

code:

The SIP response code to send. This should be 200 or higher.

reason:

The reason text to include in the response. If this is None, the default text for
the given response code is used.

extra_headers:

The extra headers to include in the response as an iterable of header objects.

notifications

SIPIncomingRequestGotRequest

This notification will be sent when a new IncomingRequest is created as result of a
received request. The application should listen for this notification, retain a reference
to the object that sent it and answer it.

SIP	 SIMPLE	 CLIENT	 SDK 247

 247

timestamp:

A datetime.datetime object indicating when the notification was sent.

method:

The method of the SIP request as a string.

request_uri:

The request URI of the request as a FrozenSIPURI object.

headers:

The headers of the request as a dict, the values of which are the relevant header
objects.

body:

The body of the request as a string, or None if no body was included.

SIPIncomingRequestSentResponse

This notification is sent when a response to the request is sent by the object.

timestamp:

A datetime.datetime object indicating when the notification was sent.

code:

The code of the SIP response as an int.

reason:

The reason text of the SIP response as an int.

headers:

The headers of the response as a dict, the values of which are the relevant
header objects.

body:

This will be None.

 248

Message

The Message class is a simple wrapper for the Request class, with the purpose of
sending MESSAGE requests, as described in RFC 3428. It is a one-shot object that
manages only one Request object.

methods

__init__(self, from_header, to_header, route_header,
content_type, body, credentials=None, extra_headers=[])

Creates a new Message object with the specified arguments. These arguments are
documented in the attributes section for this class.

send(self, timeout=None)

Send the MESSAGE request to the remote party.

timeout:

This argument as the same meaning as it does for Request.send().

end(self)

Stop trying to send the MESSAGE request. If it was not sent yet, calling this method
does nothing.

attributes

from_header

The FrozenFromHeader to put in the From header of the MESSAGE request. This
attribute is set on instantiation and is read-only.

to_header

The FrozenToHeader to put in the To header of the MESSAGE request. This attribute
is set on instantiation and is read-only.

route_header

Where to send the MESSAGE request to, including IP, port and transport, in the form
of a FrozenRouteHeader object. This will also be included in the Route header of the
request. This attribute is set on instantiation and is read-only.

SIP	 SIMPLE	 CLIENT	 SDK 249

 249

content_type

What string to put as content type in the Content-Type headers. It is set on
instantiation and is read-only.

body

The body of the MESSAGE request as a string. If no body was specified, this attribute
is None It is set on instantiation and is read-only.

credentials

The credentials to be used when challenged for authentication, represented by a
FrozenCredentials object. If no credentials were specified, this attribute is None. This
attribute is set on instantiation and is read-only.

is_sent

A boolean read-only property indicating if the MESSAGE request was sent.

in_progress

A boolean read-only property indicating if the object is waiting for the response from
the remote party.

peer_address

This read-only attribute contains the remote endpoint IP and port information. It can
be accessed by accessing this object's ip and port attributes.

notifications

SIPMessageDidSucceed

This notification will be sent when the remote party acknowledged the reception of
the MESSAGE request. It has not data attributes.

SIPMessageDidFail

This notification will be sent when transmission of the MESSAGE request fails for
whatever reason.

 250

code:

An int indicating the SIP or internal PJSIP code that was given in response to the
MESSAGE request. This is 0 if the failure is caused by an internal error.

reason:

A status string describing the failure, either taken from the SIP
response or the internal error.

SIP	 SIMPLE	 CLIENT	 SDK 251

 251

Registration
The Registration class wraps a series of Request objects, managing the registration
of a particular contact URI at a SIP registrar through the sending of REGISTER
requests. For details, see RFC 3261. This object is designed in such a way that it will
not initiate sending a refreshing REGISTER itself, rather it will inform the application
that a registration is about to expire. The application should then perform a DNS
lookup to find the relevant SIP registrar and call the register() method on this object.

methods

__init__(self, from_header, credentials=None, duration=300)

Creates a new Registration object with the specified arguments. These arguments
are documented in the attributes section for this class.

register(self, contact_header, route_header, timeout=None)

Calling this method will attempt to send a new REGISTER request to the registrar
provided, whatever state the object is in. If the object is currently busy sending a
REGISTER, this request will be preempted for the new one. Once sent, the
Registration object will send either a SIPRegistrationDidSucceed or a
SIPRegistrationDidFail notification. The contact_header argument is mentioned in the
attributes section of this class. The route_header argument specifies the IP address,
port and transport of the SIP registrar in the form of a RouteHeader object and
timeout has the same meaning as it does for Request.send().

end(self, timeout=None)

Calling this method while the object is registered will attempt to send a REGISTER
request with the Expires headers set to 0, effectively unregistering the contact URI
at the registrar. The RouteHeader used for this will be the same as the last
successfully sent REGISTER request. If another REGISTER is currently being sent, it
will be preempted. When the unregistering REGISTER request is sent, a
SIPRegistrationWillEnd notification is sent. After this, either a SIPRegistrationDidEnd
with the expired data attribute set to False will be sent, indicating a successful
unregister, or a SIPRegistrationDidNotEnd notification is sent if unregistering fails for
some reason. Calling this method when the object is not registered will do nothing.
The timeout argument has the same meaning as for the register() method.

attributes

from_header

The (Frozen)FromHeader the Registration was sent with.

credentials

 252

The credentials to be used when challenged for authentication by the registrar,
represented by a (Frozen)Credentials object. This attribute is set at instantiation, can
be None if it was not specified and can be updated to be used for the next REGISTER
request. Note that, in contrast to other classes mentioned in this document, the
Registration class does not make a copy of the Credentials object on instantiation,
but instead retains a reference to it.

duration

The amount of time in seconds to request the registration for at the registrar. This
attribute is set at object instantiation and can be updated for subsequent REGISTER
requests.

is_registered

A boolean read-only property indicating if this object is currently registered.

contact_header

If the Registration object is registered, this attribute contains the latest contact
header that was sent to the registrar as a FrozenContactHeader object. Otherwise,
this attribute is None

expires_in

If registered, this read-only property indicates in how many seconds from now this
Registration will expire. If this is not the case, this property is 0.

notifications

SIPRegistrationDidSucceed

This notification will be sent when the register() method was called and the
registration succeeded.

code:

The SIP response code as received from the registrar as an int.

reason:

The reason string received from the SIP registrar.

SIP	 SIMPLE	 CLIENT	 SDK 253

 253

route_header:

The (Frozen)RouteHeader object passed as an argument to the register()
method.

contact_header:

The contact header that was sent to the registrar as a FrozenContactHeader
object.

contact_header_list:

A full list of contact headers that are registered for this SIP account, including
the one used for this registration. The format of this data attribute is a list of
FrozenContactHeader objects.

expires_in:

The number of seconds before this registration expires

SIPRegistrationDidFail

This notification will be sent when the register() method was called and the
registration failed, for whatever reason.

code:

The SIP response code as received from the registrar as an int. This can also be
a PJSIP generated response code, or 0 if the failure was because of an internal
error.

reason:

The reason string received from the SIP registrar or the error string.

route_header:

The (Frozen)RouteHeader object passed as an argument to the register()
method.

SIPRegistrationWillExpire

This notification will be sent when a registration will expire soon. It should be used
as an indication to re-perform DNS lookup of the registrar and call the register()
method.

expires:

The number of seconds in which the registration will expire.

SIPRegistrationWillEnd

Will be sent whenever the end() method was called and an unregistering REGISTER
is sent.

SIPRegistrationDidNotEnd

 254

This notification will be sent when the unregistering REGISTER request failed for
some reason.

code:

The SIP response code as received from the registrar as an int. This can also be
a PJSIP generated response code, or 0 if the failure was because of an internal
error.

reason:

The reason string received from the SIP registrar or the error string.

SIPRegistrationDidEnd

This notification will be sent when a Registration has become unregistered.

expired:

This boolean indicates if the object is unregistered because the registration
expired, in which case it will be set to True. If this data attribute is False, it
means that unregistration was explicitly requested through the end() method.

SIP	 SIMPLE	 CLIENT	 SDK 255

 255

Publication
Publication of SIP events is an Internet standard published at RFC 3903. PUBLISH is
similar to REGISTER in that it allows a user to create, modify, and remove state in
another entity which manages this state on behalf of the user.

A Publication object represents publishing some content for a particular SIP account
and a particular event type at the SIP presence agent through a series of PUBLISH
request. This object is similar in behaviour to the Registration object, as it is also
based on a sequence of Request objects. As with this other object, the Publication
object will notify the application when a published item is about to expire and it is
the applications responsibility to perform a DNS lookup and call the publish() method
in order to send the PUBLISH request.

methods

__init__(self, from_header, event, content_type,
credentials=None, duration=300)

Creates a new Publication object with the specified arguments. These arguments are
documented in the attributes section for this class.

publish(self, body, route_header, timeout=None)

Send an actual PUBLISH request to the specified presence agent.

body:

The body to place in the PUBLISH request as a string. This body needs to be of
the content type specified at object creation. For the initial request, a body will
need to be specified. For subsequent refreshing PUBLISH requests, the body can
be None to indicate that the last published body should be refreshed. If there
was an ETag error with the previous refreshing PUBLISH, calling this method
with a body of None will throw a PublicationError.

route_header:

The host where the request should be sent to in the form of a
(Frozen)RouteHeader object.

timeout:

This can be either an int or a float, indicating in how many seconds the
SUBSCRIBE request should timeout with an internally generated 408 response.
This is is None, the internal 408 is only triggered by the internal PJSIP
transaction timeout. Note that, even if the timeout is specified, the PJSIP
timeout is also still valid.

end(self, timeout=None)

End the publication by sending a PUBLISH request with an Expires header of 0. If the
object is not published, this will result in a PublicationError being thrown.

 256

timeout:

The meaning of this argument is the same as it is for the publish() method.

attributes

from_header

The (Frozen)FromHeader the Publication was sent with.

event

The name of the event this object is publishing for the specified SIP URI, as a string.

content_type

The Content-Type of the body that will be in the PUBLISH requests. Typically this will
remain the same throughout the publication session, but the attribute may be
updated by the application if needed. Note that this attribute needs to be in the
typical MIME type form, containing a "/" character.

credentials

The credentials to be used when challenged for authentication by the presence
agent, represented by a (Frozen)Credentials object. This attribute is set at
instantiation, can be None if it was not specified and can be updated to be used for
the next PUBLISH request. Note that, in contrast to most other classes mentioned in
this document, the Publication class does not make a copy of the (Frozen)Credentials
object on instantiation, but instead retains a reference to it.

duration

The amount of time in seconds that the publication should be valid for. This attribute
is set at object instantiation and can be updated for subsequent PUBLISH requests.

is_published

A boolean read-only property indicating if this object is currently published.

expires_in

If published, this read-only property indicates in how many seconds from now this
Publication will expire. If this is not the case, this property is 0.

notifications

SIPPublicationDidSucceed

SIP	 SIMPLE	 CLIENT	 SDK 257

 257

This notification will be sent when the publish() method was called and the
publication succeeded.

code:

The SIP response code as received from the SIP presence agent as an int.

reason:

The reason string received from the SIP presence agent.

route_header:

The (Frozen)RouteHeader object passed as an argument to the publish()
method.

expires_in:

The number of seconds before this publication expires

SIPPublicationDidFail

This notification will be sent when the publish() method was called and the
publication failed, for whatever reason.

code:

The SIP response code as received from the presence agent as an int. This can
also be a PJSIP generated response code, or 0 if the failure was because of an
internal error.

reason:

The reason string received from the presence agent or the error string.

route_header:

The (Frozen)RouteHeader object passed as an argument to the publish()
method.

SIPPublicationWillExpire

This notification will be sent when a publication will expire soon. It should be used as
an indication to re-perform DNS lookup of the presence agent and call the publish()
method.

expires:

The number of seconds in which the publication will expire.

SIPPublicationWillEnd

Will be sent whenever the end() method was called and an unpublishing PUBLISH is
sent.

SIPPublicationDidNotEnd

 258

This notification will be sent when the unpublishing PUBLISH request failed for some
reason.

code:

The SIP response code as received from the presence agent as an int. This can
also be a PJSIP generated response code, or 0 if the failure was because of an
internal error.

reason:

The reason string received from the presence agent or the error string.

SIPPublicationDidEnd

This notification will be sent when a Publication has become unpublished.

expired:

This boolean indicates if the object is unpublished because the publication
expired, in which case it will be set to True. If this data attribute is False, it
means that unpublication was explicitly requested through the end() method.

SIP	 SIMPLE	 CLIENT	 SDK 259

 259

Subscription
Subscription and notifications for SIP events is an Internet standard published at
RFC 3856.

This SIP primitive class represents a subscription to a specific event type of a
particular SIP URI. This means that the application should instance this class for each
combination of event and SIP URI that it wishes to subscribe to. The event type and
the content types that are acceptable for it need to be registered first, either through
the init_options attribute of Engine (before starting it), or by calling the add_event()
method of the Engine instance. Whenever a NOTIFY is received, the application will
receive the SIPSubscriptionGotNotify event.

Internally a Subscription object has a state machine, which reflects the state of the
subscription. It is a direct mirror of the state machine of the underlying pjsip_evsub
object, whose possible states are at least NULL, SENT, ACCEPTED, PENDING, ACTIVE
or TERMINATED. The last three states are directly copied from the contents of the
Subscription-State header of the received NOTIFY request. Also, the state can be an
arbitrary string if the contents of the Subscription-State header are not one of the
three above. The state of the object is presented in the state attribute and changes
of the state are indicated by means of the SIPSubscriptionChangedState notification.
This notification is only informational, an application using this object should take
actions based on the other notifications sent by this object.

methods

__init__(self, request_uri, from_header, to_header,
contact_header, event, route_header, credentials=None,
refresh=300)

Creates a new Subscription object which will be in the NULL state. The arguments for
this method are documented in the attributes section above.

subscribe(self, extra_headers=None, content_type=None, body=None,
timeout=None)

Calling this method triggers sending a SUBSCRIBE request to the presence agent.
The arguments passed will be stored and used for subsequent refreshing SUBSCRIBE
requests. This method may be used both to send the initial request and to update
the arguments while the subscription is ongoing. It may not be called when the
object is in the TERMINATED state.

 260

extra_headers:

A dictionary of additional headers to include in the SUBSCRIBE requests.

content_type:

The Content-Type of the supplied body argument as a string. If this argument is
supplied, the body argument cannot be None.

body:

The optional body to include in the SUBSCRIBE request as a string. If this
argument is supplied, the content_type argument cannot be None.

timeout:

This can be either an int or a float, indicating in how many seconds the request
should timeout with an internally generated 408 response. If this is None, the
internal 408 is only triggered by the internal PJSIP transaction timeout. Note
that, even if the timeout is specified, the PJSIP timeout is also still valid.

end(self, timeout=None)

This will end the subscription by sending a SUBSCRIBE request with an Expires value
of 0. If this object is no longer subscribed, this method will return without performing
any action. This method cannot be called when the object is in the NULL state. The
timeout argument has the same meaning as it does for the subscribe() method.

attributes

state

Indicates which state the internal state machine is in. See the previous section for a
list of states the state machine can be in.

from_header

The FrozenFromHeader to be put in the From header of the SUBSCRIBE requests.
This attribute is set on object instantiation and is read-only.

to_header

The FrozenToHeader that is the target for the subscription. This attribute is set on
object instantiation and is read-only.

contact_header

The FrozenContactHeader to be put in the Contact header of the SUBSCRIBE
requests. This attribute is set on object instantiation and is read-only.

event

SIP	 SIMPLE	 CLIENT	 SDK 261

 261

The event package for which the subscription is as a string. This attribute is set on
object instantiation and is read-only.

route_header

The outbound proxy to use in the form of a FrozenRouteHeader object. This attribute
is set on object instantiation and is read-only.

credentials

The SIP credentials needed to authenticate at the SIP proxy in the form of a
FrozenCredentials object. If none was specified when creating the Subscription
object, this attribute is None. This attribute is set on object instantiation and is read-
only.

refresh

The refresh interval in seconds that was requested on object instantiation as an int.
This attribute is set on object instantiation and is read-only.

extra_headers

This contains the frozenlist of extra headers that was last passed to a successful call
to the subscribe() method. If the argument was not provided, this attribute is an
empty list. This attribute is read-only.

content_type

This attribute contains the Content-Type of the body that was last passed to a
successful call to the subscribe() method. If the argument was not provided, this
attribute is None.

body

This attribute contains the body string argument that was last passed to a successful
call to the subscribe() method. If the argument was not provided, this attribute is
None.

notifications

SIPSubscriptionChangedState

This notification will be sent every time the internal state machine of a Subscription
object changes state.

 262

timestamp:

A datetime.datetime object indicating when the notification was sent.

prev_state:

The previous state that the sate machine was in.

state:

The new state the state machine moved into.

SIPSubscriptionWillStart

This notification will be emitted when the initial SUBSCRIBE request is sent.

timestamp:

A datetime.datetime object indicating when the notification was sent.

SIPSubscriptionDidStart

This notification will be sent when the initial SUBSCRIBE was accepted by the
presence agent.

timestamp:

A datetime.datetime object indicating when the notification was sent.

SIPSubscriptionGotNotify

This notification will be sent when a NOTIFY is received that corresponds to a
particular Subscription object. Note that this notification could be sent when a
NOTIFY without a body is received.

SIP	 SIMPLE	 CLIENT	 SDK 263

 263

timestamp:

A datetime.datetime object indicating when the notification was sent.

method:

The method of the SIP request as a string. This will always be NOTIFY.

request_uri:

The request URI of the NOTIFY request as a SIPURI object.

headers:

The headers of the NOTIFY request as a dict. Each SIP header is represented in
its parsed for as long as PJSIP supports it. The format of the parsed value
depends on the header.

body:

The body of the NOTIFY request as a string, or None if no body was included.
The content type of the body can be learned from the Content-Type header in
the headers data attribute.

SIPSubscriptionDidFail

This notification will be sent whenever there is a failure, such as a rejected initial or
refreshing SUBSCRIBE. After this notification the Subscription object is in the
TERMINATED state and can no longer be used.

timestamp:

A datetime.datetime object indicating when the notification was sent.

code:

An integer SIP code from the fatal response that was received from the remote
party of generated by PJSIP. If the error is internal to the SIP core, this attribute
will have a value of 0.

reason:

An text string describing the failure that occurred.

SIPSubscriptionDidEnd

This notification will be sent when the subscription ends normally, i.e. the end()
method was called and the remote party sent a positive response. After this
notification the Subscription object is in the TERMINATED state and can no longer be
used.

timestamp:

A datetime.datetime object indicating when the notification was sent.

 264

IncomingSubscription
Subscription and notifications for SIP events is an Internet standard published at
RFC 3856.

This SIP primitive class is the mirror companion to the Subscription class and allows
the application to take on the server role in a SUBSCRIBE session. This means that it
can accept a SUBSCRIBE request and subsequent refreshing SUBSCRIBEs and sent
NOTIFY requests containing event state.

In order to be able to receive SUBSCRIBE requests for a particular event package,
the application needs to add the name of this event package to the incoming_events
set attribute on the Engine, either at startup or at a later time, using the
add_incoming_event() method. This event needs to be known by the Engine, i.e. it
should already be present in the events dictionary attribute. Once the event package
name is in the incoming_events set attribute, any incoming SUBSCRIBE request
containing this name in the Event header causes the creation of a IncomingSubscribe
object. This will be indicated to the application through a
SIPIncomingSubscriptionGotSubscribe notification. It is then up to the application to
check if the SUBSCRIBE request was valid, e.g. if it was actually directed at the
correct SIP URI, and respond to it in a timely fashion.

The application can either reject the subscription by calling the reject() method or
accept it through the accept() method, optionally first accepting it in the pending
state by calling the accept_pending() method. After the IncomingSubscription is
accepted, the application can trigger sending a NOTIFY request with a body reflecting
the event state through the push_content() method. Whenever a refreshing
SUBSCRIBE is received, the latest contents to be set are sent in the resulting NOTIFY
request. The subscription can be ended by using the end() method.

methods

__init__(self)

An application should never create an IncomingSubscription object itself. Doing this
will create a useless object in the None state.

reject(self, code)

Will reply to the initial SUBSCRIBE with a negative response. This method can only
be called in the "incoming" state and sets the subscription to the "terminated" state.

code:

The SIP response code to use. This should be a negative response, i.e. in the
3xx, 4xx, 5xx or 6xx range.

accept_pending(self)

Accept the initial incoming SUBSCRIBE, but put the subscription in the "pending"
state and reply with a 202, followed by a NOTIFY request indicating the state. The

SIP	 SIMPLE	 CLIENT	 SDK 265

 265

application can later decide to fully accept the subscription or terminate it. This
method can only be called in the "incoming" state.

accept(self, content_type=None, content=None)

Accept the initial incoming SUBSCRIBE and respond to it with a 200 OK, or fully
accept an IncomingSubscription that is in the "pending" state. In either case, a
NOTIFY will be sent to update the state to "active", optionally with the content
specified in the arguments. This method can only be called in the "incoming" or
"pending" state.

content_type:

The Content-Type of the content to be set supplied as a string containing a "/"
character. Note that if this argument is set, the content argument should also be
set.

content:

The body of the NOTIFY to send when accepting the subscription, as a string.
Note that if this argument is set, the content_type argument should also be set.

push_content(self, content_type, content)

Sets or updates the body of the NOTIFYs to be sent within this subscription and
causes a NOTIFY to be sent to the subscriber. This method can only be called in the
"active" state.

content_type:

The Content-Type of the content to be set supplied as a string containing a "/"
character.

content:

The body of the NOTIFY as a string.

attributes

state

Indicates which state the incoming subscription session is in. This can be one of
None, "incoming", "pending", "active" or "terminated". This attribute is read-only.

event

The name of the event package that this IncomingSubscription relates to. This
attribute is a read-only string.

content_type

The Content-Type of the last set content in this subscription session. Inititally this
will be None. This attribute is a read-only string.

 266

content

The last set content in this subscription session as a read-only string.

notifications

SIPIncomingSubscriptionChangedState

This notification will be sent every time the an IncomingSubscription object changes
state. This notification is mostly indicative, an application should not let its logic
depend on it.

timestamp:

A datetime.datetime object indicating when the notification was sent.

prev_state:

The previous state that the subscription was in.

state:

The new state the subscription has.

SIPIncomingSubscriptionGotSubscribe

This notification will be sent when a new IncomingSubscription is created as result of
an incoming SUBSCRIBE request. The application should listen for this notification,
retain a reference to the object that sent it and either accept or reject it.

timestamp:

A datetime.datetime object indicating when the notification was sent.

method:

The method of the SIP request as a string, which will be SUBSCRIBE.

request_uri:

The request URI of the SUBSCRIBE request as a FrozenSIPURI object.

headers:

The headers of the SUBSCRIBE request as a dict, the values of which are the
relevant header objects.

body:

The body of the SUBSCRIBE request as a string, or None if no body was
included.

SIPIncomingSubscriptionGotRefreshingSubscribe

This notification indicates that a refreshing SUBSCRIBE request was received from
the subscriber. It is purely informative, no action needs to be taken by the
application as a result of it.

SIP	 SIMPLE	 CLIENT	 SDK 267

 267

timestamp:

A datetime.datetime object indicating when the notification was sent.

method:

The method of the SIP request as a string, which will be SUBSCRIBE.

request_uri:

The request URI of the SUBSCRIBE request as a FrozenSIPURI object.

headers:

The headers of the SUBSCRIBE request as a dict, the values of which are the
relevant header objects.

body:

The body of the SUBSCRIBE request as a string, or None if no body was
included.

SIPIncomingSubscriptionGotUnsubscribe

This notification indicates that a SUBSCRIBE request with an Expires header of 0 was
received from the subscriber, effectively requesting to unsubscribe. It is purely
informative, no action needs to be taken by the application as a result of it.

timestamp:

A datetime.datetime object indicating when the notification was sent.

method:

The method of the SIP request as a string, which will be SUBSCRIBE.

request_uri:

The request URI of the SUBSCRIBE request as a FrozenSIPURI object.

headers:

The headers of the SUBSCRIBE request as a dict, the values of which are the
relevant header objects.

body:

The body of the SUBSCRIBE request or response as a string, or None if no body
was included.

SIPIncomingSubscriptionAnsweredSubscribe

This notification is sent whenever a response to a SUBSCRIBE request is sent by the
object, including an unsubscribing SUBSCRIBE. It is purely informative, no action
needs to be taken by the application as a result of it.

 268

timestamp:

A datetime.datetime object indicating when the notification was sent.

code:

The code of the SIP response as an int.

reason:

The reason text of the SIP response as an int.

headers:

The headers of the response as a dict, the values of which are the relevant
header objects.

body:

This will be None.

SIPIncomingSubscriptionSentNotify

This notification indicates that a NOTIFY request was sent to the subscriber. It is
purely informative, no action needs to be taken by the application as a result of it.

timestamp:

A datetime.datetime object indicating when the notification was sent.

method:

The method of the SIP request as a string, which will be NOTIFY.

request_uri:

The request URI of the NOTIFY request as a FrozenSIPURI object.

headers:

The headers of the NOTIFY request as a dict, the values of which are the
relevant header objects.

body:

The body of the NOTIFY request or response as a string, or None if no body was
included.

SIPIncomingSubscriptionNotifyDidSucceed

This indicates that a positive final response was received from the subscriber in reply
to a sent NOTIFY request. The notification is purely informative, no action needs to
be taken by the application as a result of it.

SIP	 SIMPLE	 CLIENT	 SDK 269

 269

timestamp:

A datetime.datetime object indicating when the notification was sent.

code:

The code of the SIP response as an int.

reason:

The reason text of the SIP response as a string.

headers:

The headers of the response as a dict, the values of which are the relevant
header objects.

body:

This will be None.

SIPIncomingSubscriptionNotifyDidFail

This indicates that a negative response was received from the subscriber in reply to a
sent NOTIFY request or that the NOTIFY failed to send.

timestamp:

A datetime.datetime object indicating when the notification was sent.

code:

The code of the SIP response as an int. If this is 0, the notification was sent as a
result of an internal error.

reason:

The reason text of the SIP response as a string or the internal error if the code
attribute is 0.

headers: (if the notification was caused by a negative response)

The headers of the response as a dict, the values of which are the relevant
header objects.

body: (if the notification was caused by a negative response)

This will be None.

SIPIncomingSubscriptionDidEnd

This notification is sent whenever the IncomingSubscription object reaches the
"terminated" state and is no longer valid. After receiving this notification, the
application should not longer try to use the object.

timestamp:

A datetime.datetime object indicating when the notification was sent.

 270

Referral
Subscription and notifications for SIP events is an Internet standard published at
 RFC 3856. The REFER method, defined in RFC 3515 uses the subscription
mechanism to tell SIP endpoints to refer to specific resources.

This SIP primitive class represents a referral requested by the client to a target URI.
This means that the application should instance this class for each combination of
target URI and resource it wishes the target to refer to. Whenever a NOTIFY is
received, the application will receive the SIPReferralGotNotify notification.

Not creating an implicit subscription is supported as per RFC 4488

Internally a Referral object has a state machine, which reflects the state of the
subscription. (The same as the Subscription since it uses the same event framework)
It is a direct mirror of the state machine of the underlying pjsip_evsub object, whose
possible states are at least NULL, SENT, ACCEPTED, PENDING, ACTIVE or
TERMINATED. The last three states are directly copied from the contents of the
Subscription-State header of the received NOTIFY request. Also, the state can be an
arbitrary string if the contents of the Subscription-State header are not one of the
three above. The state of the object is presented in the state attribute and changes
of the state are indicated by means of the SIPReferralChangedState notification. This
notification is only informational, an application using this object should take actions
based on the other notifications sent by this object.

methods

__init__(self, request_uri, from_header, to_header,
refer_to_header, contact_header, route_header, credentials=None)

Creates a new Referral object which will be in the NULL state. The arguments for this
method are documented in the attributes section above.

send_refer(self, create_subscription=1, extra_headers=list(),
timeout=None)

Calling this method triggers sending a REFER request to the presence agent. The
arguments passed will be stored and used for subsequent refreshing SUBSCRIBE
requests. The dialog may also be refreshed manually by using the refresh function. It
may not be called when the object is in the TERMINATED state.

create_subscription:

Boolean flag indicating if an implicit subscription should be created.

extra_headers:

A list of additional headers to include in the REFER requests.

timeout:

This can be either an int or a float, indicating in how many seconds the request
should timeout with an internally generated 408 response. If this is None, the

SIP	 SIMPLE	 CLIENT	 SDK 271

 271

internal 408 is only triggered by the internal PJSIP transaction timeout. Note
that, even if the timeout is specified, the PJSIP timeout is also still valid.

refresh(self, contact_header=None, extra_headers=list(),
timeout=None)

contact_header:

An optional ContactHeader object which will replace the local contact header and
will be used from this moment on.

extra_headers:

A list of additional headers to include in the refreshing SUBSCRIBE request.

timeout:

The timeout argument has the same meaning as it does for the send_refer()
method.

end(self, timeout=None)

This will end the referral subscription by sending a SUBSCRIBE request with an
Expires value of 0. If this object is no longer subscribed, this method will return
without performing any action. This method cannot be called when the object is in
the NULL state. The timeout argument has the same meaning as it does for the
send_refer() method.

attributes

state

Indicates which state the internal state machine is in. See the previous section for a
list of states the state machine can be in.

from_header

The FrozenFromHeader to be put in the From header of the REFER and SUBSCRIBE
requests. This attribute is set on object instantiation and is read-only.

to_header

The FrozenToHeader that is the target for the referral. This attribute is set on object
instantiation and is read-only.

refer_to_header

The FrozenReferToHeader that is the target resource for the referral. This attribute is
set on object instantiation and is read-only.

 272

local_contact_header

The FrozenContactHeader to be put in the Contact header of the REFER and
SUBSCRIBE requests. This attribute is set on object instantiation and is read-only.

remote_contact_header

The FrozenContactHeader received from the remote endpoint. This attribute is read-
only.

route_header

The outbound proxy to use in the form of a FrozenRouteHeader object. This attribute
is set on object instantiation and is read-only.

credentials

The SIP credentials needed to authenticate at the SIP proxy in the form of a
FrozenCredentials object. If none was specified when creating the Referral object,
this attribute is None. This attribute is set on object instantiation and is read-only.

refresh

The refresh interval in seconds that was requested on object instantiation as an int.
This attribute is set when a NOTIFY request is received and is read-only.

extra_headers

This contains the frozenlist of extra headers that was last passed to a successful call
to the subscribe() method. If the argument was not provided, this attribute is an
empty list. This attribute is read-only.

peer_address

This read-only attribute contains the remote endpoint IP and port information. It can
be accessed by accessing this object's ip and port attributes.

notifications

SIPReferralChangedState

This notification will be sent every time the internal state machine of a Referral
object changes state.

SIP	 SIMPLE	 CLIENT	 SDK 273

 273

timestamp:

A datetime.datetime object indicating when the notification was sent.

prev_state:

The previous state that the sate machine was in.

state:

The new state the state machine moved into.

SIPReferralWillStart

This notification will be emitted when the initial REFER request is sent.

timestamp:

A datetime.datetime object indicating when the notification was sent.

SIPReferralDidStart

This notification will be sent when the initial REFER was accepted by the remote
endpoint.

timestamp:

A datetime.datetime object indicating when the notification was sent.

SIPReferralGotNotify

This notification will be sent when a NOTIFY is received that corresponds to a
particular Referral object. Note that this notification could be sent when a NOTIFY
without a body is received.

 274

request_uri:

The request URI of the NOTIFY request as a SIPURI object.

from_header:

The From header of the NOTIFY request as a FrozenFromHeader object.

to_header:

The To header of the NOTIFY request as a FrozenToHeader object.

content_type:

The Content-Type header value of the NOTIFY request as a ContentType object.

event:

The Event header value of the NOTIFY request as a string object.

headers:

The headers of the NOTIFY request as a dict. Each SIP header is represented in
its parsed for as long as PJSIP supports it. The format of the parsed value
depends on the header.

body:

The body of the NOTIFY request as a string, or None if no body was included.

timestamp:

A datetime.datetime object indicating when the notification was sent.

SIPReferralDidFail

This notification will be sent whenever there is a failure, such as a rejected initial
REFER or refreshing SUBSCRIBE. After this notification the Referral object is in the
TERMINATED state and can no longer be used.

timestamp:

A datetime.datetime object indicating when the notification was sent.

code:

An integer SIP code from the fatal response that was received from the remote
party of generated by PJSIP. If the error is internal to the SIP core, this attribute
will have a value of 0.

reason:

An text string describing the failure that occurred.

SIPReferralDidEnd

This notification will be sent when the subscription ends normally, i.e. the end()
method was called and the remote party sent a positive response. It will also be sent
when the remote endpoint sends a NOTIFY request with a noresource reason in the
Subscription-State header. After this notification the Referral object is in the
TERMINATED state and can no longer be used.

SIP	 SIMPLE	 CLIENT	 SDK 275

 275

timestamp:

A datetime.datetime object indicating when the notification was sent.

 276

IncomingReferral
Subscription and notifications for SIP events is an Internet standard published at
 RFC 3856. The REFER method, defined in RFC 3515 uses the subscription
mechanism to to tell SIP endpoints to refer to specific resources.

This SIP primitive class is the mirror companion to the Referral class and allows the
application to take on the server role in a REFER dialog. This means that it can
accept a REFER request and subsequent refreshing SUBSCRIBEs and sent NOTIFY
requests containing event state.

Any incoming REFER request causes the creation of a IncomingReferral object. This
will be indicated to the application through a SIPIncomingReferralGotRefer
notification. It is then up to the application to check if the REFER request was valid,
e.g. if it was actually directed at the correct SIP URI, and respond to it in a timely
fashion.

The application can either reject the referral by calling the reject() method or accept
it through the accept() method. After the IncomingReferral is accepted, the
application can trigger sending a NOTIFY request with a body reflecting the event
state through the send_notify() method. Whenever a refreshing SUBSCRIBE is
received, the latest contents to be set are sent in the resulting NOTIFY request. The
subscription can be ended by using the end() method.

methods

__init__(self)

An application should never create an IncomingSubscription object itself. Doing this
will create a useless object in the None state.

reject(self, code)

Will reply to the initial REFER with a negative response. This method can only be
called in the "incoming" state and sets the referral to the "terminated" state.

code:

The SIP response code to use. This should be a negative response, i.e. in the
3xx, 4xx, 5xx or 6xx range.

accept(self, code=202, duration=180)

Accept the initial incoming REFER and respond to it with a 202 Accepted. A NOTIFY
will be sent to update the state to "active", with a payload indicating the referral is in
100 Trying state. This method can only be called in the "incoming" state.

SIP	 SIMPLE	 CLIENT	 SDK 277

 277

code:

The code to be used for the initial reply.

duration:

The desired duration for the implicit subscription. Unlike SUBSCRIBE initiated
dialogs, in a referral the receiving party is the one choosing the expiration time.

send_notify(self, code, status=None)

Sets or updates the body of the NOTIFYs to be sent within this referral and causes a
NOTIFY to be sent to the subscriber. This method can only be called in the "active"
state.

code:

The response code to be used to generate the sipfrag payload.

status:

Optional status reason to be used to build the sipfrag payload. If none was
specified the standard reason string will be used.

attributes

state

Indicates which state the incoming referral dialog is in. This can be one of None,
"incoming", "pending", "active" or "terminated". This attribute is read-only.

local_contact_header

The FrozenContactHeader to be put in the Contact header of the REFER and
SUBSCRIBE responses and NOTIFY requests. This attribute is set on object
instantiation and is read-only.

remote_contact_header

The FrozenContactHeader received from the remote endpoint. This attribute is read-
only.

peer_address

This read-only attribute contains the remote endpoint IP and port information. It can
be accessed by accessing this object's ip and port attributes.

notifications

SIPIncomingReferralChangedState

 278

This notification will be sent every time the an IncomingReferral object changes
state. This notification is mostly indicative, an application should not let its logic
depend on it.

timestamp:

A datetime.datetime object indicating when the notification was sent.

prev_state:

The previous state that the subscription was in.

state:

The new state the subscription has.

SIPIncomingReferralGotRefer

This notification will be sent when a new IncomingReferral is created as result of an
incoming REFER request. The application should listen for this notification, retain a
reference to the object that sent it and either accept or reject it.

timestamp:

A datetime.datetime object indicating when the notification was sent.

method:

The method of the SIP request as a string, which will be REFER.

request_uri:

The request URI of the REFER request as a FrozenSIPURI object.

refer_to:

The Refer-To header as a FrozenReferToHeader object.

headers:

The headers of the REFER request as a dict, the values of which are the relevant
header objects.

body:

The body of the REFER request as a string, or None if no body was included.

SIPIncomingReferralGotRefreshingSubscribe

This notification indicates that a refreshing SUBSCRIBE request was received from
the subscriber. It is purely informative, no action needs to be taken by the
application as a result of it.

SIPIncomingReferralGotUnsubscribe

This notification indicates that a SUBSCRIBE request with an Expires header of 0 was
received from the subscriber, effectively requesting to unsubscribe. It is purely
informative, no action needs to be taken by the application as a result of it.

SIP	 SIMPLE	 CLIENT	 SDK 279

 279

SIPIncomingReferralAnsweredRefer

This notification is sent whenever a response to a REFER request is sent by the
object. It is purely informative, no action needs to be taken by the application as a
result of it.

timestamp:

A datetime.datetime object indicating when the notification was sent.

code:

The code of the SIP response as an int.

reason:

The reason text of the SIP response as an int.

headers:

The headers of the response as a dict, the values of which are the relevant
header objects.

body:

This will be None.

SIPIncomingReferralSentNotify

This notification indicates that a NOTIFY request was sent to the subscriber. It is
purely informative, no action needs to be taken by the application as a result of it.

timestamp:

A datetime.datetime object indicating when the notification was sent.

method:

The method of the SIP request as a string, which will be NOTIFY.

request_uri:

The request URI of the NOTIFY request as a FrozenSIPURI object.

headers:

The headers of the NOTIFY request as a dict, the values of which are the
relevant header objects.

body:

The body of the NOTIFY request or response as a string, or None if no body was
included.

SIPIncomingReferralNotifyDidSucceed

This indicates that a positive final response was received from the subscriber in reply
to a sent NOTIFY request. The notification is purely informative, no action needs to
be taken by the application as a result of it.

 280

timestamp:

A datetime.datetime object indicating when the notification was sent.

code:

The code of the SIP response as an int.

reason:

The reason text of the SIP response as a string.

headers:

The headers of the response as a dict, the values of which are the relevant
header objects.

body:

This will be None.

SIPIncomingReferralNotifyDidFail

This indicates that a negative response was received from the subscriber in reply to a
sent NOTIFY request or that the NOTIFY failed to send.

timestamp:

A datetime.datetime object indicating when the notification was sent.

code:

The code of the SIP response as an int. If this is 0, the notification was sent as a
result of an internal error.

reason:

The reason text of the SIP response as a string or the internal error if the code
attribute is 0.

headers: (if the notification was caused by a negative response)

The headers of the response as a dict, the values of which are the relevant
header objects.

body: (if the notification was caused by a negative response)

This will be None.

SIPIncomingReferralDidEnd

This notification is sent whenever the IncomingReferral object reaches the
"terminated" state and is no longer valid. After receiving this notification, the
application should not longer try to use the object.

timestamp:

A datetime.datetime object indicating when the notification was sent.

SIP	 SIMPLE	 CLIENT	 SDK 281

 281

AudioMixer
An AudioMixer manages two audio devices, on for input and one for output, and is
able to route audio data for a number of sources. It wraps a PJSIP conference
bridge, the concept of which is explained in the PJSIP documentation. Any
component in the core that either produces or consumes sound, i.e. AudioTransport,
ToneGenerator, WaveFile and RecordingWaveFile objects, has a ConferenceBridge
associated with it and a corresponding slot on that conference bridge. The sound
devices, both input and output, together always occupy slot 0. It is up to the
application to setup the desired routing between these components. Note that the
middleware provides an abstracted API which hides the complexity of using the low-
level PJSIP concepts. This is mainly provided in the {{{sipsimple.audio}}} module,
but also consists of other audio-enabled objects (such as the AudioStream).

methods

__init__(self, input_device, output_device, sample_rate,
ec_tail_length=200, slot_count=254)

Creates a new ConferenceBridge object.

 282

input_device:

The name of the audio input device to use as a string, or None if no input device
is to be used. A list of known input devices can be queried through the
Engine.input_devices attribute. If "system_default" is used, PJSIP will select the
system default output device, or None if no audio input device is present. The
device that was selected can be queried afterwards through the input_device
attribute.

output_device:

The name of the audio output device to use as a string, or None if no output
device is to be used. A list of known output devices can be queried through the
Engine.output_devices attribute. If "system_default" is used, PJSIP will select
the system default output device, or None if no audio output device is present.
The device that was selected can be queried afterwards through the
output_device attribute.

sample_rate:

The sample rate on which the conference bridge and sound devices should
operate in Hz. This must be a multiple of 50.

ec_tail_length:

The echo cancellation tail length in ms. If this value is 0, no echo cancellation is
used.

slot_count:

The number of slots to allocate on the conference bridge. Not that this includes
the slot that is occupied by the sound devices.

set_sound_devices(self, input_device, output_device,
ec_tail_length)

Change the sound devices used (including echo cancellation) by the conference
bridge. The meaning of the parameters is that same as for __init__().

connect_slots(self, src_slot, dst_slot)

Connect two slots on the conference bridge, making audio flow from src_slot to
dst_slot.

disconnect_slots(self, src_slot, dst_slot)

Break the connection between the specified slots. Note that when an audio object is
stopped or destroyed, its connections on the conference bridge will automatically be
removed.

attributes

input_device

SIP	 SIMPLE	 CLIENT	 SDK 283

 283

A string specifying the audio input device that is currently being used. If there is no
input device, this attribute will be None. This attribute is read-only, but may be
updated by calling the set_sound_devices() method.

output_device

A string specifying the audio output device that is currently being used. If there is no
output device, this attribute will be None. This attribute is read-only, but may be
updated by calling the set_sound_devices() method.

sample_rate

The sample rate in Hz that the conference bridge is currently operating on. This
read-only attribute is passed when the object is created.

ec_tail_length

The current echo cancellation tail length in ms. If this value is 0, no echo cancellation
is used. This attribute is read-only, but may be updated by calling the
set_sound_devices() method.

slot_count

The total number of slots that is available on the conference bridge This read-only
attribute is passed when the object is created.

used_slot_count

A read-only attribute indicating the number of slots that are used by objects.

input_volume

This writable property indicates the % of volume that is read from the audio input
device. By default this value is 100.

output_volume

This writable property indicates the % of volume that is sent to the audio output
device. By default this value is 100.

muted

This writable boolean property indicates if the input audio device is muted.

connected_slots

 284

A read-only list of tupples indicating which slot is connected to which. Connections
are directional.

SIP	 SIMPLE	 CLIENT	 SDK 285

 285

MixerPort
This a simple object which simply copies all the audio data it gets as input to it
output. It's main purpose is that of facilitating the creation the of the middleware
AudioBridge object.

methods

__init__(self, mixer)

Create a new MixerPort which is associated with the specified AudioMixer.

start(self)

Activate the mixer port. This will reserve a slot on the AudioMixer and allow it to be
connected to other slots.

stop(self)

Deactivate the mixer port. This will release the slot previously allocated on the
AudioMixer and all connections which it had will be discarded.

attributes

mixer

The AudioMixer this MixerPort is associated with This attribute is read-only.

is_active

Whether or not this MixerPort has a slot associated in its AudioMixer. This attribute is
read-only.

slot

The slot this MixerPort has reserved on AudioMixer or None if it is not active. This
attribute is read-only.

 286

WaveFile
This is a simple object that allows playing back of a .wav file over the PJSIP
conference bridge. Only 16-bit PCM and A-law/U-law formats are supported. Its main
purpose is the playback of ringtones or previously recorded conversations.

This object is associated with a AudioMixer instance and, once the start() method is
called, connects to it and sends the sound to all its connections. Note that the slot of
the WaveFile object will not start playing until it is connected to another slot on the
AudioMixer. If the stop() method is called or the end of the .wav file is reached, a
WaveFileDidFinishPlaying notification is sent by the object. After this the start()
method may be called again in order to re-use the object.

It is the application's responsibility to keep a reference to the WaveFile object for the
duration of playback. If the reference count of the object reaches 0, playback will be
stopped automatically. In this case no notification will be sent.

methods

__init__(self, mixer, filename)

Creates a new WaveFile object.

mixer:

The AudioMixer object that this object is to be connected to.

filename:

The name of the .wav file to be played back as a string. This should include the
full path to the file.

start(self)

Start playback of the .wav file.

stop(self)

Stop playback of the file.

attributes

mixer

The AudioMixer this object is associated with. This attribute is read-only.

filename

The name of the .wav file, as specified when the object was created. This attribute is
read-only.

SIP	 SIMPLE	 CLIENT	 SDK 287

 287

slot

A read-only property indicating the slot number at which this object is attached to
the associated AudioMixer. If the WaveFile is not active, this attribute will be None.

volume

A writable property indicating the % of volume at which this object contributes audio
to the AudioMixer. By default this is set to 100.

is_active

A boolean read-only property that indicates if the file is currently being played.

notifications

WaveFileDidFinishPlaying

This notification will be sent whenever playing of the .wav has stopped. After sending
this event, the playback may be re-started.

timestamp:

A datetime.datetime object indicating when the notification was sent.

 288

RecordingWaveFile
This is a simple object that allows recording audio to a PCM .wav file.

This object is associated with a AudioMixer instance and, once the start() method is
called, crecords sound from its connections. Note that the RecordingWaveFile will not
record anything if it does not have any connections. Recording to the file can be
stopped either by calling the stop() method or by removing all references to the
object. Once the stop() method has been called, the start() method may not be
called again. It is the application's responsibility to keep a reference to the
RecordingWaveFile object for the duration of the recording, it will be stopped
automatically when the reference count reaches 0.

methods

__init__(self, mixer, filename)

Creates a new RecordingWaveFile object.

mixer:

The AudioMixer object that this object is to be associated with.

filename:

The name of the .wav file to record to as a string. This should include the full
path to the file.

start(self)

Start recording the sound to the .wav file.

stop(self)

Stop recording to the file.

attributes

mixer

The AudioMixer this object is associated with. This attribute is read-only.

filename

The name of the .wav file, as specified when the object was created. This attribute is
read-only.

slot

SIP	 SIMPLE	 CLIENT	 SDK 289

 289

A read-only property indicating the slot number at which this object is attached to
the associated AudioMixer. If the RecordingWaveFile is not active, this attribute will
be None.

is_active

A boolean read-only attribute that indicates if the file is currently being written to.

 290

ToneGenerator
A ToneGenerator can generate a series of dual frequency tones and has a shortcut
method for generating valid DTMF tones. Each instance of this object is associated
with a AudioMixer object, which it will connect to once started. The tones will be sent
to the slots on the AudioMixer its slot is connected to. Once started, a ToneGenerator
can be stopped by calling the stop() method and is automatically destroyed when the
reference count reaches 0.

Note: this object has threading issues when the application uses multiple
AudioMixers. It should not be used.

methods

__init__(self, mixer)

Creates a new ToneGenerator object.

mixer:

The AudioMixer object that this object is to be connected to.

start(self)

Start the tone generator and connect it to its associated AudioMixer.

stop(self)

Stop the tone generator and remove it from the conference bridge.

play_tones(self, tones)

Play a sequence of single or dual frequency tones over the audio device.

tones:

This should be a list of 3-item tuples, in the form of [(<freq1>, <freq2>,
<duration>), ...], with Hz as unit for the frequencies and ms as unit for the
duration. If freq2 is 0, this indicates that only freq1 should be used for the tone.
If freq1 is 0, this indicates a pause when no tone should be played for the set
duration.

play_dtmf(self, digit)

Play a single DTMF digit.

digit:

A string of length 1 containing a valid DTMF digit, i.e. 0 through 9, #, * or A
through D.

attributes

mixer

The AudioMixer this object is associated with. This attribute is read-only.

SIP	 SIMPLE	 CLIENT	 SDK 291

 291

slot

A read-only property indicating the slot number at which this object is attached to
the associated AudioMixer. If the ToneGenerator has not been started, this attribute
will be None.

volume

A writable property indicating the % of volume at which this object contributes
audio. By default this is set to 100.

is_active

A boolean read-only property that indicates if the object has been started.

is_busy

A boolean read-only property indicating if the ToneGenerator is busy playing tones.

notifications

ToneGeneratorDidFinishPlaying

This notification will be sent whenever playing of the queued tones has finished.

timestamp:

A datetime.datetime object indicating when the notification was sent.

 292

MSRP API
Message Session Relay Protocol (MSRP) is a protocol for transmitting a series of
related Instant Messages in the context of a session. Message sessions are treated
like any other media stream when set up via a rendezvous or session creation
protocol such as the Session Initiation Protocol (SIP).

• MSRP sessions are defined in RFC 4975
• MSRP relay extension used for NAT traversal of instant messaging and file

transfer sessions is defined in RFC 4976

The MSRP protocol stack is implemented by msrplib Python package.

msrplib is based upon twisted and eventlet and provides a set of classes for
establishing and managing MSRP connections.

The library consists of the following modules:

msrplib.transport

Defines MSRPTransport class, which provides low level control over MSRP
connections.

msrplib.connect

Defines means to establish a connection, bind it, and provide an initialized
MSRPTransport instance.

msrplib.session

Defines MSRPSession class, which provides high level control over a MSRP
connection.

msrplib.protocol

Provides representation and parsing of MSRP entities - chunks and MSRP URIs.

SIP	 SIMPLE	 CLIENT	 SDK 293

 293

URI
This class is implemented in the msrplib.protocol module and is used to represent an
MSRP URI.

methods

__init__(self, host=None, use_tls=False, user=None, port=None,
session_id=None, parameters=None, credentials=None)

Constructs a new URI. All the arguments specified here are also attributes on the
object. For more information on these attributes, see RFC4975.

host:

The hostname or IP address which forms the URI.

use_tls:

Whether this identifies an msrps or msrp URI.

user:

The user part of the URI.

port:

The port in the URI.

session_id:

The session identifier part of the URI.

parameters:

A dict containing the parameters which will be appended to the URI.

credentials:

A gnutls.interfaces.twisted.X509Credentials object which will be used if this
identifies a TLS URI to authenticate to the other endpoint.

 294

MSRPRelaySettings
This class is implemented in the msrplib.connect module and is used to specify the
MSRP relay which will be used when connecting via a relay (using the
ConnectorRelay or AcceptorRelay classes).

methods

__init__(self, domain, username, password, host=None,
use_tls=False, port=None, credentials=None)

Constructs a new URI. All the arguments specified here are also attributes on the
object. For more information on these attributes, see RFC4975.

domain:

The DNS domain in which to search for a MSRP relay using SRV queries.

username:

The username which will be used to authenticate to the relay.

password:

The password which will be used to authenticate to the relay.

host:

The hostname or IP address of the MSRP relay.

use_tls:

Whether this identifies an msrps or msrp URI.

port:

The port in the URI.

credentials:

A gnutls.interfaces.twisted.X509Credentials object which will be used to
authenticate to the relay if TLS is used.

SIP	 SIMPLE	 CLIENT	 SDK 295

 295

ConnectorDirect
This class is implemented in the msrplib.connect module and is used for outbound
MSRP connections without a relay.

methods

__init__(self, loger=None, use_sessmatch=False)

Constructs a new ConnectorDirect.

logger:

The logger which will be used for this MSRP connection. See the Logging section
for more information.

use_sessmatch:

Indicates if the connector should use the session matching mechanism defined
by the http://tools.ietf.org/html/draft-ietf-simple-msrp-sessmatch-10

prepare(self, local_uri=None)

This method returns a full local path - list of protocol.URI instances, suitable to be
put in SDP 'a:path' attribute.

local_uri:

This attribute will be used to construct the local path, but other than that it is
not used anywhere else in case of the ConnectorDirect. If not provided, one will
be automatically generated

complete(self, full_remote_path)

This method establishes the connection and binds it (sends an empty chunk to verify
each other's From-Path and To-Path). It returns transport.MSRPTransport instance,
ready to read and send chunks.

full_remote_path:

A list of protocol.URI instances, obtained by parsing 'a:path' put in SDP by the
remote party.

cleanup(self)

This method cleans up after prepare(); it should be called if complete() will not be
called for whatever reason.

 296

AcceptorDirect
This class is implemented in the msrplib.connect module and is used for inbound
MSRP connections without using a relay.

methods

__init__(self, loger=None, use_sessmatch=False)

Constructs a new AcceptorDirect.

logger:

The logger which will be used for this MSRP connection. See the Logging section
for more information.

use_sessmatch:

Indicates if the connector should use the session matching mechanism defined
by the http://tools.ietf.org/html/draft-ietf-simple-msrp-sessmatch-10

prepare(self, local_uri=None)

This method starts listening on a socket identified by the parameters in the
local_uri argument. It returns a full local path - list of protocol.URI instances,
suitable to be put in SDP 'a:path' attribute.

local_uri:

This attribute will be used to construct the local path and to listen for incomming
connections. If not provided, one will be automatically generated. Note that the
object may be changed in place: for example, if the port specified is 0, a random
one will be selected and the object will be updated accordingly.

complete(self, full_remote_path)

This method waits for an incoming connection and a chunk sent by the other party.
It returns transport.MSRPTransport instance, ready to read and send chunks.

full_remote_path:

A list of protocol.URI instances, obtained by parsing 'a:path' put in SDP by the
remote party. This is checked agains the From-Path header in the binding
chunk.

cleanup(self)

This method cleans up after prepare(); it should be called if complete() will not
be called for whatever reason.

SIP	 SIMPLE	 CLIENT	 SDK 297

 297

RelayConnection
This class is implemented in the msrplib.connect module and is used for inbound and
outbound MSRP connections using a relay.

methods

__init__(self, relay, mode, loger=None, use_sessmatch=False)

Constructs a new RelayConnection.

relay:

An instance of MSRPRelaySettings which identifies the relay which is to be used.

mode:

A string indicating if this connection should be active, an empty SEND should be
sent when complete is called, or passive, where it will wait for one.

logger:

The logger which will be used for this MSRP connection. See the Logging section
for more information.

use_sessmatch:

Indicates if the connector should use the session matching mechanism defined
by the http://tools.ietf.org/html/draft-ietf-simple-msrp-sessmatch-10

prepare(self, local_uri=None)

This method returns a full local path - list of protocol.URI instances, suitable to be
put in SDP 'a:path' attribute.

local_uri:

This attribute will be used to construct the local path, but other than that it is
not used anywhere else in case of the ConnectorRelay. If not provided, one will
be automatically generated

complete(self, full_remote_path)

This method establishes the connection to the relay and binds it (sends an empty
chunk or waits for one, depending on the mode, to verify each other's From-Path and
To-Path). It returns transport.MSRPTransport instance, ready to read and send
chunks.

full_remote_path:

A list of protocol.URI instances, obtained by parsing 'a:path' put in SDP by the
remote party.

cleanup(self)

 298

This method cleans up after prepare(); it should be called if complete() will not be
called for whatever reason.

SIP	 SIMPLE	 CLIENT	 SDK 299

 299

MSRPTransport
This class is implemented in the msrplib.transport module and provies low level
access to the MSRP connection. This class should not be constructed directly, but
rather its intances should be obtained by using the various connector/acceptor
classes documented above.

methods

make_chunk(self, transaction_id=None, method='SEND', code=None,
comment=None, data='', contflag=None, start=1, end=None,
length=None, message_id=None)

Creates a new chunk (protocol.MSRPData instance), which is either an MSRP request
or a response. Proper From-Path, To-Path, Byte-Range and Message-ID headers are
added based on MSRPTransport's state and the parameters provided. Use data for
payload, and start/end/length to generate the Byte-Range header.

 300

transaction_id:

The transaction id which will be put in the chunk. If it is not provided, one will be
randomly generated.

method:

The method of the new MSRP request, or None if a response is required.

code:

The code of the new MSRP response, or None if a request is required.

code:

The comment of the new MSRP response, or None if a request is required or a
comment on the response is not.

data:

The payload of the new chunk, or an empty string if no payload is required.

contflag:

MSRP chunk's continuation flag ('$', '+' or '#'). Default is '$' for a full message,
unless a partial SEND chunk required, in which case it should be set to '+'. If
None is provided, either '$' or '+' will be used depending on whether this chunk
seems to carry the last part of the message data.

start:

The first byte's index within the whole message payload this chunk will carry as
its own payload.

end:

The last byte's index within the whole message payload this chunk will carry as
its own payload. Note that this is an inclusive index. If this is not provided, it's
computed based on the number of bytes in data and start.

length:

The total number of bytes of the whole message payload. If this is not provided,
it is computed as if this chunk carries that last part of the message payload.

message_id:

The ID of the message this chunk is part of. If it is not provided, one will be
randomly generated.

write_chunk(self, chunk, wait=True)

Writes the chunk provided to the underlying socket.

chunk:

The chunk which is to be written, an instance of MSRPData.

wait:

If True, waits for the operation to complete.

write_response(self, chunk, code, comment, wait=True)

SIP	 SIMPLE	 CLIENT	 SDK 301

 301

Creates a response which is suitable as a reply to the specified chunk and writes it to
the underlying socket. chunk: The chunk for which to create a response. code: The
status code of the response which is to be created. comment: The comment of the
response which is to be created. wait: If True, waits for the operation to complete.

read_chunk(self, size=None)

Waits for a new chunk and returns it. If there was an error, closes the connection
and raises ChunkParseError.

In case of unintelligible input, loses the connection and returns None. When the
connection is closed, raises the reason of the closure (e.g. ConnectionDone).

If the data already read exceeds size, stops reading the data and returns a "virtual"
chunk, i.e. the one that does not actually correspond the the real MSRP chunk. Such
chunks have Byte-Range header changed to match the number of bytes read and
continuation that is '+'; they also possess segment attribute, an integer, starting
with 1 and increasing with every new segment of the chunk.

Note, that size only hints when to interrupt the segment but does not affect how the
data is read from socket. You may have segments bigger than size and it's legal to
set size to zero (which would mean return a chunk as long as you get some data,
regardless how small).

size:

The hint towards how much to read from the socket. If the data already read is
larger, then all the data will be returned, even if it exceeds size bytes.

check_incoming_SEND_chunk(self, chunk)

Checks the 'To-Path' and 'From-Path' of the incoming SEND chunk. Returns None is
the paths are valid for this connection. If an error is detected an MSRPError is
created and returned.

 302

MSRPData
This class is implemented in the msrplib.protocol module and represents an MSRP
chunk, either a request or a response.

attributes

The following attributes are read-only.

content_type

The MIME type of the payload carried by this chunk, which is stored in the
Content-Type header.

message_id

The ID of the message this chunk is part of, which is stored in the Message-ID
header.

byte_range

A 3-tuple containing the start, end and length values (in this order) from the
Byte-Range header.

status

The value of the Status header.

failure_report

The value of the Failure-Report header, whether it exists or it is implied; one of
'yes', 'no', 'partial'.

success_report

The value of the Success-Report header, whether it exists or it is implied; one of
'yes' or 'no'.

size

The size of the payload of this chunk, in bytes.

methods

__init__(self, transaction_id, method=None, code=None,
comment=None, headers=None, data='', contflag='$')

Initializes a new MSRPData instance. All the arguments are also available as
attributes.

SIP	 SIMPLE	 CLIENT	 SDK 303

 303

transaction_id:

The transaction identified of this chunk.

method:

The method of this chunk if it a request and None if it is a response.

code:

The status code of this chunk if it is a response and None if it is a request.

comment:

The comment of this chunk if it is a response and None if it is a request.

headers:

A dict containing the headers which are to be added to this chunk, or None if no
headers are to be added.

data:

The payload of this chunk, or an empty string if no payload is to be added.

contflag:

The MSRP continuation flag of this chunk, one of '$', '#' or '+'.

copy(self)

Returns a new MSRPData instance with exactly the same attributes as this object.

add_header(self, header)

Add a MSRP header to this chunk.

header:

The header object which is to be added to this chunk.

verify_headers(self)

Verifies that the chunk contains a To-Path and a From-Path header and that all the
headers are valid.

encode_start(self)

Returns a string containing the MSRP header of this chunk.

encode_end(self, continuation)

Returns a string containing the MSRP end line of this chunk: 7 commas followed by
the transaction identifier and the continuation flag specified.

 304

continuation:

The continuation flag which is to be used in the end line.

encode(self):

Returns a string containing the whole of this MSRP chunk.

SIP	 SIMPLE	 CLIENT	 SDK 305

 305

OutgoingFile
This class is implemented in the msrplib.session module and represents a file which
is to be sent via MSRP.

attributes

headers

A dict which maps header names to header objects. These headers will be sent
in the MSRP message used to send the file.

methods

__init__(self, fileobj, size, content_type=None, position=0,
message_id=None)

Initializes a new OutgoingFile using the specified file object. All arguments are
available as attributes, except for content_type which will be part of the headers
attribute.

fileobj:

A file-like object which will be used for reading the data to be sent.

size:

The size of the whole file.

content_type:

The MIME type associated with the file's data. If provided, it will be added as a
Content-Type header.

position:

The position within the file from which data will be sent. The file object must
already be seeked to this position.

message_id:

The message ID which will be used for sending this file.

 306

MSRPSession
This class is implemented in the msrplib.session module and provides a high level
API for MSRP sessions.

methods

__init__(self, msrptransport, accept_types=['*'],
on_incoming_cb=None)

Initializes MSRPSession instance over the specified transport. The incoming chunks
are reported through the on_incoming_cb callback.

msrptransport:

An instance of MSRPTransport over which this session will operate.

accept_types:

A list of MIME types which are acceptable over this session. If data is received
with a Content-Type header which doesn't match this list, a negative response is
sent back and the application does not get the received data. The special strings
'*' and '<type>/*' can be used to match multiple MIME types.

on_incoming_cb:

A function which receives two arguments, both optional with default values of
None: chunk and error. This will be called when a new chunk is received.

send_chunk(self, chunk, response_cb=None)

Sends the specified chunk and reports the result via the response_cb callback.

When response_cb argument is present, it will be used to report the transaction
response to the caller. When a response is received or generated locally,
response_cb is called with one argument. The function must do something quickly
and must not block, because otherwise it would block the reader greenlet.

If no response was received after RESPONSE_TIMEOUT seconds,

1. 408 response is generated if Failure-Report was 'yes' or absent
2. 200 response is generated if Failure-Report was 'partial' or 'no'

Note that it's rather wasteful to provide response_cb argument other than None for
chunks with Failure-Report='no' since it will always fire 30 seconds later with 200
result (unless the other party is broken and ignores Failure-Report header)

If sending is not possible, MSRPSessionError is raised.

SIP	 SIMPLE	 CLIENT	 SDK 307

 307

chunk:

The chunk which is to be sent. It must be an instance of MSRPData which
represents a request.

response_cb:

A function receiving a single argument which will be the response received for
the sent chunk.

deliver_chunk(self, chunk, event=None)

Sends the specified chunk and waits for the transaction response (if Failure-Report
header is not 'no'). Returns the transaction response if it's a success or raise
MSRPTransactionError if it's not.

If chunk's Failure-Report is 'no', returns None immediately.

chunk:

The chunk which is to be sent. It must be an intance of MSRPData which
represents a request.

event:

The eventlet.coros.event object which will be used to wait for a response. It's
send method will be called when a response is received. If it is not provided, one
will be constructed automatically and used.

send_file(self, outgoing_file)

Adds the specified file to the queue of files to be sent. The method returns
immediately.

outgoing_file:

An instance of OutgoingFile which represents the file to be sent.

shutdown(self, sync=True)

Sends the messages already in queue then closes the connection.

 308

MSRPServer
This class is implemented in the msrplib.connect module. MSRPServer solves the
problem with AcceptorDirect: concurrent using of 2 or more AcceptorDirect instances
on the same non-zero port is not possible. If you initialize() those instances, one
after another, one will listen on the socket and another will get BindError.

MSRPServer avoids the problem by sharing the listening socket between multiple
connections. It has a slightly different interface from AcceptorDirect, so it cannot be
considered a drop-in replacement.

It manages the listening sockets and binds incoming requests.

methods

__init__(self, logger)

Constructs a new MSRPServer which will be using the specifed logger for its
connections.

logger:

The default logger which will be used for this object's MSRP connections. See the
Logging section for more information.

prepare(self, local_uri=None, logger=None)

Starts a listening port specified by local_uri if there isn't one on that port/interface
already. Adds local_uri to the list of expected URIs, so that incoming connections
featuring this URI won't be rejected. If logger is provided, it uses it for this
connection instead of the one specified in __init___.

local_uri:

The URI which will be added to the list of expected URIs. Connections from this
URI will be accepted.

logger:

The logger which will be used for connections from the specified URI. See the
Logging section for more information.

complete(self, full_remote_path)

Waits until one of the incoming connections binds using the provided
full_remote_path. Returns the connected and bound MSRPTransport instance. If no
such binding was made within MSRPBindSessionTimeout.seconds,
MSRPBindSessionTimeout is raised.

SIP	 SIMPLE	 CLIENT	 SDK 309

 309

full_remote_path:

A list of protocol.URI instances, obtained by parsing 'a:path' put in SDP by the
remote party.

cleanup(self, local_uri)

Removes local_uri from the list of expected URIs.

local_uri:

The URI which is to be removed from the list of expected URIs.

 310

Headers
The MSRP headers are represented using objects from the msrplib.protocol module.
All MSRP header object provide three properties:

name: The name of the header, as it appears in MSRP chunks. encode: The MSRP
encoded header value, as it appears in MSRP chunks. decode: The high-level object
representing the header value.

All headers can be constructed by passing either the encoded or decoded objects to
__init__. The following headers are provided:

ToPathHeader

The name of the header is 'To-Path' and the decoded value is a deque of URI objects.

FromPathHeader

The name of the header is 'From-Path' and the decoded value is a deque of URI
objects.

MessageIDHeader

The name of the header is 'Message-ID' and the decoded value is the string
containing the message ID.

SuccessReportHeader

The name of the header is 'Success-Report' and the decoded value is one of 'yes' or
'no'.

FailureReportHeader

The name of the header is 'Failure-Report' and the decoded value is one of 'yes',
'partial' or 'no'.

ByteRangeHeader

The name of the header is 'Byte-Range' and the decoded value is a 3-tuple
containing the start, end and length values.

SIP	 SIMPLE	 CLIENT	 SDK 311

 311

attributes
fro

The start value of the header: the index within the whole message payload
where a chunk's payload starts.

end

The end value of the header: the index within the whole message payload where
a chunk's payload ends. Note that this index is inclusive.

length

The total size of the message payload.

StatusHeader

The name of the header is 'Status' and the decoded value is a 2-tuple containing the
status code and comment.

attributes
code

The code component of the header.

comment

The comment component of the header.

ExpiresHeader

The name of the header is 'Expires' and the decoded value is an integer.

MinExpiresHeader

The name of the header is 'Min-Expires' and the decoded value is an integer.

MaxExpiresHeader

The name of the header is 'Max-Expires' and the decoded value is an integer.

UsePathHeader

The name of the header is 'Use-Path' and the decoded value is a deque of URI
objects.

WWWAuthenticateHeader

The name of the header is 'WWW-Authenticate' and the decoded value is a dictionary
of the parameters within the header.

AuthorizationHeader

The name of the header is 'Authorization' and the decoded value is a dictionary of
the parameters within the header.

 312

AuthenticationInfoHeader

The name of the header is 'Authentication-Info' and the decoded value is a dictionary
of the parameters within the header.

ContentTypeHeader

The name of the header is 'Content-Type' and the decoded value is the string
representing the MIME type.

ContentIDHeader

The name of the header is 'Content-ID' and the decoded value is the string with the
value of the header.

ContentDescriptionHeader

The name of the header is 'Content-Description' and the decoded value is the string
with the value of the header.

ContentDispositionHeader

The name of the header is 'Content-Disposition' and the decoded value is a list with
two elements: the disposition and a dict with the parameters.

SIP	 SIMPLE	 CLIENT	 SDK 313

 313

Logging
Logging is done throughout the library using objects defined by the application,
called loggers. If logging is not desired, the application.python.Null object of python-
application can be used. These loggers must define the following methods:

methods

received_new_chunk(data, transport, chunk)

This method is called when the start of a new chunk is received.

data:

The data which came along with the start of the chunk.

transport:

The MSRPTransport instance on which the chunk was received.

chunk:

The actual chunk object.

received_chunk_data(data, transport, transaction_id)

This method is called when data is received as part of a chunk previously
announced via received_new_chunk.

data:

The data received as part of the chunk.

transport:

The MSRPTransport instance on which the chunk was received.

transaction_id:

The transaction ID which identifies the chunk for which data was received.

received_chunk_end(data, transport, transaction_id)

This method is called when the last data of a chunk is received. The chunk was
previously announced via received_new_chunk.

 314

data:

The last data received as part of the chunk.

transport:

The MSRPTransport instance on which the chunk was received.

transaction_id:

The transaction ID which identifies the chunk which was ended.

sent_new_chunk(data, transport, chunk)

This method is called when the start of a new chunk is sent.

data:

The data which was sent along with the start of the chunk.

transport:

The MSRPTransport instance on which the chunk was sent.

chunk:

The actual chunk object.

sent_chunk_data(data, transport, transaction_id)

This method is called when data is sent as part of a chunk previously announced via
sent_new_chunk.

data:

The data sent as part of the chunk.

transport:

The MSRPTransport instance on which the chunk was sent.

transaction_id:

The transaction ID which identifies the chunk for which data was sent.

sent_chunk_end(data, transport, transaction_id)

This method is called when the last data of a chunk is sent. The chunk was
previously announced via sent_new_chunk.

SIP	 SIMPLE	 CLIENT	 SDK 315

 315

data:

The last data sent as part of the chunk.

transport:

The MSRPTransport instance on which the chunk was sent.

transaction_id:

The transaction ID which identifies the chunk which was ended.

debug(message)

This method is called when a debug level message is sent by the library.

info(message)

This method is called when a info level message is sent by the library.

warn(message)

This method is called when a warning level message is sent by the library.

error(message)

This method is called when a error level message is sent by the library.

fatal(message)

This method is called when a fatal level message is sent by the library.

 316

Examples
Creating an outbound connection

When creating an outbound connection, a relay is not usually used because NAT
traversal is not a problem for the endpoing creating the connection. If one is
nevertheless desired, a ConnectorRelay can be used instead:

from msrplib.connect import ConnectorDirect
from msrplib.session import MSRPSession

connector = ConnectorDirect()
full_local_path = connector.prepare()
try:
 # put full_local_path in SDP 'a:path' attribute of offer
 # get full_remote_path from remote's 'a:path: attribute of reply
 msrp_transport = connector.complete(full_remote_path)
except:
 connector.cleanup()
 raise

def handle_incoming(chunk=None, error=None):
 if error is not None:
 print 'Error: %s' % error
 session.shutdown()
 elif chunk is not None:
 print 'Got data: %s' % chunk.data

session = MSRPSession(msrp_transport, on_incoming_cb=handle_incoming)
session.send_chunk(msrp_transport.make_chunk(data='Hello world!'))

Waiting for an inbound connection

When creating an inbound connection, a relay must be used for NAT traversal.
However, if one is not desired, an AceptorDirect can be used instead:

from msrplib.connect import RelayConnection, MSRPRelaySettings
from msrplib.session import MSRPSession

relay = MSRPRelaySettings(domain='example.org', username='user',
password='pass')
connector = RelayConnection(relay, 'passive')
full_local_path = connector.prepare()
try:
 # get full_remote_path from remote's 'a:path: attribute of offer
 # put full_local_path in SDP 'a:path' attribute of reply
 msrp_transport = connector.complete(full_remote_path)
except:
 connector.cleanup()
 raise

def handle_incoming(chunk=None, error=None):
 if error is not None:
 print 'Error: %s' % error

SIP	 SIMPLE	 CLIENT	 SDK 317

 317

 session.shutdown()
 elif chunk is not None:
 print 'Got data: %s' % chunk.data

session = MSRPSession(msrp_transport, on_incoming_cb=handle_incoming)
session.send_chunk(msrp_transport.make_chunk(data='Hello world!'))

 318

XCAP API
XCAP protocol allows a client to read, write, and modify application configuration
data stored in XML format on a server. XCAP maps XML document sub-trees and
element attributes to HTTP URIs, so that these components can be directly accessed
by clients using HTTP protocol. An XCAP server is used by XCAP clients to store data
like buddy lists and presence policy in combination with a SIP Presence server that
supports PUBLISH, SUBSCRIBE and NOTIFY methods to provide a complete SIP
SIMPLE solution.

XCAP client is implemented by python-xcaplib. The library provides
xcaplib.client.XCAPClient class which is an HTTP client with an interface better suited
for XCAP servers. The library also provides a version of XCAPClient
(xcaplib.green.XCAPClient) built on top of eventlet, which may be used in twisted
reactor.

SIP	 SIMPLE	 CLIENT	 SDK 319

 319

Components
GET

get(self, application, node=None, etag=None, headers=None)

Make an HTTP GET request to the resource identified by application and node. Return
a Resource instance on success. Raise HTTPError if the operation was unsuccessful.

PUT

put(self, application, resource, node=None, etag=None,
headers=None)

Make an HTTP PUT request to the resource identified by application and node. Use
resource as a request body. Raise HTTPError is the operation was unsuccessful.

DELETE

delete(self, application, node=None, etag=None, headers=None)

Make an HTTP DELETE request to the resource identified by application and node.
Raise HTTPError if the operation was unsuccessful.

 320

Usage

client = XCAPClient(xcap_root, xcap_user_id, password=password)
document = file('examples/resource-lists.xml').read()

put the document on the server
client.put('resource-lists', document)

read the document from the server
got = client.get('resource-lists')

get a specific element within a document
element = client.get('resource-lists', '/resource-
lists/list/entry/display-name')

get an attribute:
res = client.get('resource-lists', '/resource-lists/list/entry/@uri')

replace an element conditionally, based on the etag
client.put('resource-lists', '<entry
uri="sip:bob@example.com"><display-name>The Bob</display-
name></entry>',
 '/resource-lists/list/entry[@uri="sip:bob@example.com"]',
etag=stored_etag)

delete an element
client.delete('resource-lists', node_selector, etag=res.etag)

SIP	 SIMPLE	 CLIENT	 SDK 321

 321

Payloads API
Implemented in sipsimple/payloads/*.py

The following modules are used for parsing and generating bodies carried using SIP
PUBLISH/SUBSCRIBE/NOTIFY methods that have been designed for asynchronous
event notifications to convey in real-time state and other information between end-
points.

An example of state information is presence, which in its basic form provides user
availability information based on end-user choice. In its advanced form, presence
can provide rich state information including but not limited to user mood, geo-
location, environment, noise level and type of communication desired. The
information can be disseminated based on a granular policy which allows end-users
to decide who has access to which part of the published information.

These applications are used by the SIP core Publication and Subscription classes.

 322

Common Policy

Implemented in sipsimple/payloads/policy.py

Generic data types to be used in policy applications, according to RFC 4745.

Example

>>> alice = IdentityOne('sip:alice@example.com')
>>> carol = IdentityOne('tel:+1-212-555-1234')
>>> bob = IdentityOne('mailto:bob@example.net')
>>> print carol
tel:+1-212-555-1234
>>> id = Identity([alice, bob])
>>> print id
Identity([IdentityOne('sip:alice@example.com'),
IdentityOne('mailto:bob@example.net')])
>>> id[1:1] = [carol]
>>> print id
Identity([IdentityOne('sip:alice@example.com'), IdentityOne('tel:+1-
212-555-1234'), IdentityOne('mailto:bob@example.net')])
>>> conditions = Conditions([id])
>>> rule = Rule(id='f3g44r1', conditions=conditions, actions=Actions(),
transformations=Transformations())
>>> ruleset = RuleSet()
>>> ruleset.append(rule)
>>> print ruleset.toxml(pretty_print=True)
<?xml version='1.0' encoding='UTF-8'?>
<cp:ruleset xmlns:cp="urn:ietf:params:xml:ns:common-policy">
 <cp:rule id="f3g44r1">
 <cp:conditions>
 <cp:identity>
 <cp:one id="sip:alice@example.com"/>
 <cp:one id="mailto:bob@example.net"/>
 <cp:one id="tel:+1-212-555-1234"/>
 </cp:identity>
 </cp:conditions>
 <cp:actions/>
 <cp:transformations/>
 </cp:rule>
</cp:ruleset>
<BLANKLINE>

SIP	 SIMPLE	 CLIENT	 SDK 323

 323

Pres-rules

Implemented in sipsimple/payloads/presrules.py

Parses and produces Presence Authorization Rules documents according to RFC
5025.

Authorization rules are stored on the XCAP server. The presence rules are generated
either based on user initiative or as a response to a new subscription signaled by a
change in the watcherinfo application.

Example

>>> conditions =
Conditions([Identity([IdentityOne('sip:user@example.com')])])
>>> actions = Actions([SubHandling('allow')])
>>> transformations = Transformations()
>>> psrv = ProvideServices(provides=[ServiceURIScheme('sip'),
ServiceURIScheme('mailto')])
>>> ppers = ProvidePersons(all=True)
>>> transformations[0:0] = [psrv, ppers]
>>> transformations.append(ProvideActivities('true'))
>>> transformations.append(ProvideUserInput('bare'))
>>> transformations.append(ProvideUnknownAttribute(ns='urn:vendor-
specific:foo-namespace', name='foo', value='true'))
>>> rule = Rule(id='a', conditions=conditions, actions=actions,
transformations=transformations)
>>> prules = PresRules([rule])
>>> print prules.toxml(pretty_print=True)
<?xml version='1.0' encoding='UTF-8'?>
<cp:ruleset xmlns:pr="urn:ietf:params:xml:ns:pres-rules"
xmlns:cp="urn:ietf:params:xml:ns:common-policy">
 <cp:rule id="a">
 <cp:conditions>
 <cp:identity>
 <cp:one id="sip:user@example.com"/>
 </cp:identity>
 </cp:conditions>
 <cp:actions>
 <pr:sub-handling>allow</pr:sub-handling>
 </cp:actions>
 <cp:transformations>
 <pr:provide-services>
 <pr:service-uri-scheme>sip</pr:service-uri-scheme>
 <pr:service-uri-scheme>mailto</pr:service-uri-scheme>
 </pr:provide-services>
 <pr:provide-persons>
 <pr:all-persons/>
 </pr:provide-persons>
 <pr:provide-activities>true</pr:provide-activities>
 <pr:provide-user-input>bare</pr:provide-user-input>
 <pr:provide-unknown-attribute ns="urn:vendor-specific:foo-
namespace" name="foo">true</pr:provide-unknown-attribute>
 </cp:transformations>

 324

 </cp:rule>
</cp:ruleset>
<BLANKLINE>

SIP	 SIMPLE	 CLIENT	 SDK 325

 325

Resource Lists

Implemented in sipsimple/payloads/resourcelists.py

This module provides convenient classes to parse and generate resource-lists
documents as described in RFC 4826.

Used for server side storage of presence related buddy lists using XCAP protocol. The
SIP clients maintain the resource-lists on the XCAP server which provides persisten
storage and aggregation point for multiple devices.

Generation

>>> bill = Entry('sip:bill@example.com', display_name = 'Bill Doe')
>>> petri = EntryRef('some/ref')
>>> friends = List([bill, petri])
>>> rl = ResourceLists([friends])
>>> print rl.toxml(pretty_print=True)
<?xml version='1.0' encoding='UTF-8'?>
<rl:resource-lists xmlns:rl="urn:ietf:params:xml:ns:resource-lists">
 <rl:list>
 <rl:entry uri="sip:bill@example.com">
 <rl:display-name>Bill Doe</rl:display-name>
 </rl:entry>
 <rl:entry-ref ref="some/ref"/>
 </rl:list>
</rl:resource-lists>
<BLANKLINE>

toxml() wraps etree.tostring() and accepts all its arguments (like pretty_print).

Parsing

>>> r = ResourceLists.parse(example_from_section_3_3_rfc)
>>> len(r)
1

>>> friends = r[0]
>>> friends.name
'friends'

>>> bill = friends[0]
>>> bill.uri
'sip:bill@example.com'
>>> print bill.display_name
Bill Doe

>>> close_friends = friends[2]
>>> print close_friends[0]
"Joe Smith" <sip:joe@example.com>
>>> print close_friends[2].display_name
Marketing

 326

RLS Services

Implemented in sipsimple/payloads/rlsservices.py

Parses and builds application/rls-services+xml documents according to RFC 4826.

Used for delegating presence related works to the server. The client build rls-services
lists with buddies and instructs the server to subscribe to the sip uris indicated in the
lists. This way the client can save bandwidth as the server performs the signaling for
subscription and collection of notifications and provides consolidated answers to the
SIP user agent.

Generation

>>> buddies = Service('sip:mybuddies@example.com',
'http://xcap.example.com/xxx', ['presence'])
>>> marketing = Service('sip:marketing@example.com')
>>> marketing.list = RLSList([Entry('sip:joe@example.com'),
Entry('sip:sudhir@example.com')])
>>> marketing.packages = ['presence']
>>> rls = RLSServices([buddies, marketing])
>>> print rls.toxml(pretty_print=True)
<?xml version='1.0' encoding='UTF-8'?>
<rls-services xmlns:rl="urn:ietf:params:xml:ns:resource-lists"
xmlns="urn:ietf:params:xml:ns:rls-services">
 <service uri="sip:mybuddies@example.com">
 <resource-list>http://xcap.example.com/xxx</resource-list>
 <packages>
 <package>presence</package>
 </packages>
 </service>
 <service uri="sip:marketing@example.com">
 <list>
 <rl:entry uri="sip:joe@example.com"/>
 <rl:entry uri="sip:sudhir@example.com"/>
 </list>
 <packages>
 <package>presence</package>
 </packages>
 </service>
</rls-services>
<BLANKLINE>

Parsing

>>> rls = RLSServices.parse(example_from_section_4_3_rfc)
>>> len(rls)
2

>>> rls[0].uri
'sip:mybuddies@example.com'

>>> print rls[0].list

SIP	 SIMPLE	 CLIENT	 SDK 327

 327

http://xcap.example.com/xxx

>>> print rls[0].packages[0]
presence

>>> rls[1].uri
'sip:marketing@example.com'

>>> assert len(rls[1].packages) == 1 and rls[1].packages[0] ==
'presence'

 328

Presence Data Model

Implemented in sipsimple/payloads/presdm.py

PIDF handling according to RFC 3863 and RFC 3379. This module provides classes
to parse and generate PIDF documents.

Used to parse NOTIFY body for presence event and generate state information for
use with PUBLISH method and to parse the state of buddy lists entries we have
subscribed to. A SIP client typically instantiates a new PIDF object for itself and for
each buddy it SUBSCRIBEs to and updates each object when a NOTIFY is received.
The list of buddies is maintained using the resource-lists XCAP application.

Example

>>> from datetime import datetime
>>> pidf = PIDF('pres:someone@example.com')
>>> status = Status(basic=Basic('open'))
>>> contact = Contact('im:someone@mobilecarrier.net')
>>> contact.priority = "0.8"
>>> tuple1 = Service('bs35r9', notes=[ServiceNote("Don't Disturb
Please!"), ServiceNote("Ne derangez pas, s'il vous plait", lang="fr")],
status=status)
>>> tuple1.contact = contact
>>> tuple1.timestamp = Timestamp(datetime(2008, 9, 11, 20, 42, 03))
>>> tuple2 = Service('eg92n8', status=Status(basic=Basic('open')),
contact=Contact('mailto:someone@example.com'))
>>> tuple2.contact.priority = "1.0"
>>> pidf.notes.add(Note("I'll be in Tokyo next week"))
>>> pidf.append(tuple1)
>>> pidf.append(tuple2)
>>> print pidf.toxml(pretty_print=True)
<?xml version='1.0' encoding='UTF-8'?>
<presence xmlns:rpid="urn:ietf:params:xml:ns:pidf:rpid"
xmlns:dm="urn:ietf:params:xml:ns:pidf:data-model"
xmlns="urn:ietf:params:xml:ns:pidf" entity="pres:someone@example.com"
 <tuple id="bs35r9">
 <status>
 <basic>open</basic>
 </status>
 <contact priority="0.8">im:someone@mobilecarrier.net</contact>
 <note>Don't Disturb Please!</note>
 <note xml:lang="fr">Ne derangez pas, s'il vous plait</note>
 <timestamp>2008-09-11T20:42:03Z</timestamp>
 </tuple>
 <tuple id="eg92n8">
 <status>
 <basic>open</basic>
 </status>
 <contact priority="1.0">mailto:someone@example.com</contact>
 </tuple>
 <note>I'll be in Tokyo next week</note>
</presence>
<BLANKLINE>

SIP	 SIMPLE	 CLIENT	 SDK 329

 329

Rich Presence Extension

Implemented in sipsimple/payloads/rpid.py

RPID handling according to RFC 4480. This module provides an extension to PIDF
(module sipsimple.applications.presdm) to support rich presence.

__all__ = ['_rpid_namespace_',
 'ActivityElement',
 'MoodElement',
 'PlaceTypeElement',
 'PrivacyElement',
 'SphereElement',
 'RPIDNote',
 'Activities',
 'Mood',
 'PlaceIs',
 'AudioPlaceInformation',
 'VideoPlaceInformation',
 'TextPlaceInformation',
 'PlaceType',
 'AudioPrivacy',
 'TextPrivacy',
 'VideoPrivacy',
 'Privacy',
 'Relationship',
 'ServiceClass',
 'Sphere',
 'StatusIcon',
 'TimeOffset',
 'UserInput',
 'Class',
 'Other']

 330

Watcher-info

Implemented in sipsimple/payloads/watcherinfo.py

Parses application/watcherinfo+xml documents according to RFC 3857 and
RFC3858.

Used for parsing of NOTIFY body for presence.winfo event. Used for keeping track of
watchers that subscribed to our presentity. Based on this information the
authorization rules can be managed using presrules.py. To retrieve this information
the SIP client must subscribe to its own address for event presence.winfo.

Example

>>> winfo_doc='''<?xml version="1.0"?>
... <watcherinfo xmlns="urn:ietf:params:xml:ns:watcherinfo"
... version="0" state="full">
... <watcher-list resource="sip:professor@example.net"
package="presence">
... <watcher status="active"
... id="8ajksjda7s"
... duration-subscribed="509"
... event="approved" >sip:userA@example.net</watcher>
... <watcher status="pending"
... id="hh8juja87s997-ass7"
... display-name="Mr. Subscriber"
... event="subscribe">sip:userB@example.org</watcher>
... </watcher-list>
... </watcherinfo>'''
>>> winfo = WatcherInfo()

The return value of winfo.update() is a dictionary containing WatcherList objects

as keys and lists of the updated watchers as values.

>>> updated = winfo.update(winfo_doc)
>>> len(updated['sip:professor@example.net'])
2

winfo.pending, winfo.terminated and winfo.active are dictionaries indexed by

WatcherList objects as keys and lists of Wacher objects as values.

>>> print winfo.pending['sip:professor@example.net'][0]
"Mr. Subscriber" <sip:userB@example.org>
>>> print winfo.pending['sip:professor@example.net'][1]
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
IndexError: list index out of range
>>> print winfo.active['sip:professor@example.net'][0]
sip:userA@example.net
>>> len(winfo.terminated['sip:professor@example.net'])

SIP	 SIMPLE	 CLIENT	 SDK 331

 331

0

winfo.wlists is the list of WatcherList objects

>>> list(winfo.wlists[0].active) ==
list(winfo.active['sip:professor@example.net'])
True

See the classes for more information.

 332

XCAP-diff

Implemented in sipsimple/payloads/xcapdiff.py

This module allows parsing and building xcap-diff documents according to draft-ietf-
simple-xcap-diff.

Used to parse NOTIFY body for xcap-diff event. Used to detect changes in XCAP
documents changed by other device configured for the same presentity.

SIP	 SIMPLE	 CLIENT	 SDK 333

 333

Is-composing

Implemented in sipsimple/payloads/iscomposing.py

This module parses and produces isComposing messages according to RFC3994.

 334

Message Summary

Implemented in sipsimple/payloads/messagesummary.py

This module parses and produces message-summary messages according to RF3842.

SIP	 SIMPLE	 CLIENT	 SDK 335

 335

User Agent Capability

Implemented in python-sipsimple/payloads/caps.py

User Agent Capability Extension handling according to RFC5196

This module provides an extension to PIDF to describe a user-agent capabilities in
the PIDF documents.

__all__ = ['caps_namespace',
 'Audio',
 'Application',
 'Data',
 'Control',
 'Video',
 'Video',
 'Text',
 'Message',
 'Type',
 'Automata',
 'Class',
 'ClassPersonal',
 'ClassBusiness',
 'Duplex',
 'DuplexFull',
 'DuplexHalf',
 'DuplexReceiveOnly',
 'DuplexSendOnly',
 'Description',
 'EventPackages',
 'EventConference',
 'EventDialog',
 'EventKpml',
 'EventMessageSummary',
 'EventPocSettings',
 'EventPresence',
 'EventReg',
 'EventRefer',
 'EventSiemensRtpStats',
 'EventSpiritsIndps',
 'EventSpiritsUserProf',
 'EventWinfo',
 'Priority',
 'PriorityLowerthan',
 'PriorityHigherthan',
 'PriorityEquals',
 'PriorityRange',
 'Methods',
 'MethodAck',
 'MethodBye',
 'MethodCancel',
 'MethodInfo',
 'MethodInvite',
 'MethodMessage',
 'MethodNotify',

 336

 'MethodOptions',
 'MethodPrack',
 'MethodPublish',
 'MethodRefer',
 'MethodRegister',
 'MethodSubscribe',
 'MethodUpdate',
 'Extensions',
 'ExtensionRel100',
 'ExtensionEarlySession',
 'ExtensionEventList',
 'ExtensionFromChange',
 'ExtensionGruu',
 'ExtensionHistinfo',
 'ExtensionJoin',
 'ExtensionNoRefSub',
 'ExtensionPath',
 'ExtensionPrecondition',
 'ExtensionPref',
 'ExtensionPrivacy',
 'ExtensionRecipientListInvite',
 'ExtensionRecipientListSubscribe',
 'ExtensionReplaces',
 'ExtensionResourcePriority',
 'ExtensionSdpAnat',
 'ExtensionSecAgree',
 'ExtensionTdialog',
 'ExtensionTimer',
 'Schemes',
 'Scheme',
 'Actor',
 'ActorPrincipal',
 'ActorAttendant',
 'ActorMsgTaker',
 'ActorInformation',
 'IsFocus',
 'Languages',
 'Language',
 'Servcaps',
 'Mobility',
 'MobilityFixed',
 'MobilityMobile',
 'Devcaps',
 'ServcapsExtension',
 'EventPackagesExtension',
 'PriorityExtension',
 'MethodsExtension',
 'ExtensionsExtension',
 'DevcapsExtension',
 'MobilityExtension']

SIP	 SIMPLE	 CLIENT	 SDK 337

 337

CIPID

Implemented in python-sipsimple/payloads/cipid.py

CIPID handling according to RFC4482. This module provides an extension to PIDF to
provide additional contact information about a presentity.

__all__ = ['cipid_namespace', 'Card', 'DisplayName', 'Homepage',
'Icon', 'Map', 'Sound']

 338

Conference

Implemented in python-sipsimple/payloads/conference.py

Parses and produces conference-info messages according to RFC4575.

__all__ = ['namespace',
 'ConferenceApplication',
 'ConferenceDescription',
 'ConfUris',
 'ConfUrisEntry',
 'ServiceUris',
 'ServiceUrisEntry',
 'UrisTypeModified',
 'UrisTypeEntry',
 'AvailableMedia',
 'AvailableMediaEntry',
 'Users',
 'User',
 'AssociatedAors',
 'Roles',
 'Role',
 'Endpoint',
 'CallInfo',
 'Sip',
 'Referred',
 'JoiningInfo',
 'DisconnectionInfo',
 'HostInfo',
 'HostInfoUris',
 'ConferenceState',
 'SidebarsByRef',
 'SidebarsByVal',
 'Conference',
 'ConferenceDescriptionExtension']

SIP	 SIMPLE	 CLIENT	 SDK 339

 339

Dialog Info

Implemented in python-sipsimple/payloads/dialoginfo.py

Parses and produces conference-info messages according to RFC4575.

__all__ = ['namespace',
 'DialogInfoApplication',
 'DialogState',
 'Replaces',
 'ReferredBy',
 'Identity',
 'Param',
 'Target',
 'Local',
 'Remote',
 'Dialog',
 'DialogInfo']

 340

Sample Code
Implemented in sipclients/sip-session.py

sip-session command line script is a show-case for the powerful features of SIP
SIMPLE development kit related to establishing, modifying and terminating SIP
sessions with multiple media types like VoIP, Instant Messaging and File Transfer.

#!/usr/bin/env python
Copyright (C) 2008-2010 AG Projects. See LICENSE for details.

import hashlib
import os
import re
import signal

from datetime import datetime
from itertools import chain
from operator import attrgetter
from optparse import OptionParser
from threading import Event, Thread
from time import sleep

from application import log
from application.notification import IObserver, NotificationCenter
from application.python.queue import EventQueue
from application.python.util import Null
from eventlet import api, proc
from twisted.internet import reactor
from zope.interface import implements

from sipsimple.core import Engine, SIPCoreError, SIPURI, ToHeader

from sipsimple.account import Account, AccountManager, BonjourAccount
from sipsimple.application import SIPApplication
from sipsimple.audio import WavePlayer
from sipsimple.configuration import ConfigurationError
from sipsimple.configuration.backend.file import FileBackend
from sipsimple.configuration.settings import SIPSimpleSettings
from sipsimple.lookup import DNSLookup
from sipsimple.session import IllegalStateError, Session
from sipsimple.streams import AudioStream, ChatStream, FileSelector, FileTransferStream
from sipsimple.util import run_in_green_thread

from sipclient.configuration import config_filename
from sipclient.configuration.account import AccountExtension
from sipclient.configuration.datatypes import ResourcePath
from sipclient.configuration.settings import SIPSimpleSettingsExtension
from sipclient.log import Logger
from sipclient.system import IPAddressMonitor
from sipclient.ui import Prompt, Question, RichText, UI

This is a helper function for sending formatted notice messages
def send_notice(text, bold=True):
 ui = UI()
 if isinstance(text, list):
 ui.writelines([RichText(line, bold=bold) if not isinstance(line, RichText) else line for line
in text])
 elif isinstance(text, RichText):
 ui.write(text)
 else:
 ui.write(RichText(text, bold=bold))

Utility classes

class BonjourNeighbour(object):
 def __init__(self, uri, display_name=None):
 self.uri = uri
 self.display_name = display_name

 def __hash__(self):
 return hash(self.uri)

SIP	 SIMPLE	 CLIENT	 SDK 341

 341

 def __eq__(self, other):
 if isinstance(other, BonjourNeighbour):
 return self.uri == other.uri and self.display_name == other.display_name
 else:
 return self.uri == other

 def __ne__(self, other):
 return not self.__eq__(other)

class RTPStatisticsThread(Thread):
 def __init__(self):
 Thread.__init__(self)
 self.setDaemon(True)
 self.stopped = False

 def run(self):
 application = SIPSessionApplication()
 while not self.stopped:
 if application.active_session is not None and application.active_session.streams:
 try:
 audio_stream = [stream for stream in application.active_session.streams if
isinstance(stream, AudioStream)][0]
 except IndexError:
 pass
 else:
 stats = audio_stream.statistics
 if stats is not None:
 reactor.callFromThread(send_notice, '%s RTP statistics: RTT=%d ms, packet
loss=%.1f%%, jitter RX/TX=%d/%d ms' %

(datetime.now().replace(microsecond=0),
 stats['rtt']['avg'] / 1000,
 100.0 * stats['rx']['packets_lost'] /
stats['rx']['packets'] if stats['rx']['packets'] else 0,
 stats['rx']['jitter']['avg'] / 1000,
 stats['tx']['jitter']['avg'] / 1000))
 sleep(10)

 def stop(self):
 self.stopped = True

class NATDetector(object):
 implements(IObserver)

 def __init__(self):
 notification_center = NotificationCenter()
 notification_center.add_observer(self, name='SIPApplicationDidStart')

 def handle_notification(self, notification):
 handler = getattr(self, '_NH_%s' % notification.name, Null())
 handler(notification)

 def _NH_SIPApplicationDidStart(self, notification):
 notification_center = NotificationCenter()
 lookup = DNSLookup()
 notification_center.add_observer(self, name='SIPEngineDetectedNATType')
 notification_center.add_observer(self, sender=lookup)
 lookup.lookup_service(SIPURI(host=notification.sender.account.id.domain), 'stun')

 def _NH_SIPEngineDetectedNATType(self, notification):
 if notification.data.succeeded:
 send_notice('Detected NAT type: %s' % notification.data.nat_type)

 def _NH_DNSLookupDidSucceed(self, notification):
 engine = Engine()
 stun_server, stun_port = notification.data.result[0]
 engine.detect_nat_type(stun_server, stun_port)

class OutgoingCallInitializer(object):
 implements(IObserver)

 def __init__(self, account, target, audio=False, chat=False):
 self.account = account
 self.target = target
 self.streams = []
 if audio:
 self.streams.append(AudioStream(account))
 if chat:

 342

 self.streams.append(ChatStream(account))
 self.wave_ringtone = None

 def start(self):
 if isinstance(self.account, BonjourAccount) and '@' not in self.target:
 send_notice('Bonjour mode requires a host in the destination address')
 return
 if '@' not in self.target:
 self.target = '%s@%s' % (self.target, self.account.id.domain)
 if not self.target.startswith('sip:') and not self.target.startswith('sips:'):
 self.target = 'sip:' + self.target
 try:
 self.target = SIPURI.parse(self.target)
 except SIPCoreError:
 send_notice('Illegal SIP URI: %s' % self.target)
 else:
 if '.' not in self.target.host and not isinstance(self.account, BonjourAccount):
 self.target.host = '%s.%s' % (self.target.host, self.account.id.domain)
 lookup = DNSLookup()
 notification_center = NotificationCenter()
 notification_center.add_observer(self, sender=lookup)
 settings = SIPSimpleSettings()
 if isinstance(self.account, Account) and self.account.sip.outbound_proxy is not None:
 uri = SIPURI(host=self.account.sip.outbound_proxy.host,
port=self.account.sip.outbound_proxy.port, parameters={'transport':
self.account.sip.outbound_proxy.transport})
 else:
 uri = self.target
 lookup.lookup_sip_proxy(uri, settings.sip.transport_list)

 def handle_notification(self, notification):
 handler = getattr(self, '_NH_%s' % notification.name, Null())
 handler(notification)

 def _NH_DNSLookupDidSucceed(self, notification):
 notification_center = NotificationCenter()
 notification_center.remove_observer(self, sender=notification.sender)
 session = Session(self.account)
 notification_center.add_observer(self, sender=session)
 session.connect(ToHeader(self.target), routes=notification.data.result, streams=self.streams)
 application = SIPSessionApplication()
 application.outgoing_session = session

 def _NH_DNSLookupDidFail(self, notification):
 send_notice('Call to %s failed: DNS lookup error: %s' % (self.target,
notification.data.error))
 notification_center = NotificationCenter()
 notification_center.remove_observer(self, sender=notification.sender)

 def _NH_SIPSessionNewOutgoing(self, notification):
 session = notification.sender
 local_identity = str(session.local_identity.uri)
 if session.local_identity.display_name:
 local_identity = '"%s" <%s>' % (session.local_identity.display_name, local_identity)
 remote_identity = str(session.remote_identity.uri)
 if session.remote_identity.display_name:
 remote_identity = '"%s" <%s>' % (session.remote_identity.display_name, remote_identity)
 send_notice("Initiating SIP session from '%s' to '%s' via %s..." % (local_identity,
remote_identity, session.route))

 def _NH_SIPSessionGotRingIndication(self, notification):
 settings = SIPSimpleSettings()
 ui = UI()
 ringtone = settings.sounds.audio_outbound
 if ringtone:
 self.wave_ringtone = WavePlayer(SIPApplication.voice_audio_mixer,
ringtone.path.normalized, volume=ringtone.volume, loop_count=0, pause_time=2)
 SIPApplication.voice_audio_bridge.add(self.wave_ringtone)
 self.wave_ringtone.start()
 ui.status = 'Ringing...'

 def _NH_SIPSessionWillStart(self, notification):
 ui = UI()
 if self.wave_ringtone:
 self.wave_ringtone.stop()
 SIPApplication.voice_audio_bridge.remove(self.wave_ringtone)
 self.wave_ringtone = None
 ui.status = 'Connecting...'

 def _NH_SIPSessionDidStart(self, notification):
 notification_center = NotificationCenter()
 ui = UI()

SIP	 SIMPLE	 CLIENT	 SDK 343

 343

 session = notification.sender
 notification_center.remove_observer(self, sender=session)
 ui.status = 'Connected'
 reactor.callLater(2, setattr, ui, 'status', None)

 application = SIPSessionApplication()
 application.outgoing_session = None

 for stream in notification.data.streams:
 if isinstance(stream, AudioStream):
 send_notice('Audio session established using "%s" codec at %sHz' % (stream.codec,
stream.sample_rate))
 if stream.ice_active:
 send_notice('Audio RTP endpoints %s:%d (ICE type %s) <-> %s:%d (ICE type %s)' %
(stream.local_rtp_address, stream.local_rtp_port, stream.local_rtp_candidate_type,
stream.remote_rtp_address, stream.remote_rtp_port, stream.remote_rtp_candidate_type))
 else:
 send_notice('Audio RTP endpoints %s:%d <-> %s:%d' % (stream.local_rtp_address,
stream.local_rtp_port, stream.remote_rtp_address, stream.remote_rtp_port))
 if stream.srtp_active:
 send_notice('RTP audio stream is encrypted')
 if session.remote_user_agent is not None:
 send_notice('Remote SIP User Agent is "%s"' % session.remote_user_agent)

 def _NH_SIPSessionDidFail(self, notification):
 notification_center = NotificationCenter()
 session = notification.sender
 notification_center.remove_observer(self, sender=session)

 ui = UI()
 ui.status = None

 application = SIPSessionApplication()
 application.outgoing_session = None

 if self.wave_ringtone:
 self.wave_ringtone.stop()
 SIPApplication.voice_audio_bridge.remove(self.wave_ringtone)
 self.wave_ringtone = None
 if notification.data.failure_reason == 'user request' and notification.data.code == 487:
 send_notice('SIP session cancelled')
 elif notification.data.failure_reason == 'user request':
 send_notice('SIP session rejected by user (%d %s)' % (notification.data.code,
notification.data.reason))
 else:
 send_notice('SIP session failed: %s' % notification.data.failure_reason)

class IncomingCallInitializer(object):
 implements(IObserver)

 sessions = 0
 tone_ringtone = None

 def __init__(self, session, auto_answer_interval=None):
 self.session = session
 self.auto_answer_interval = auto_answer_interval
 self.question = None

 def start(self):
 IncomingCallInitializer.sessions += 1
 notification_center = NotificationCenter()
 notification_center.add_observer(self, sender=self.session)

 # start auto-answer
 self.answer_timer = None
 if self.auto_answer_interval == 0:
 self.session.accept(self.session.proposed_streams)
 return
 elif self.auto_answer_interval > 0:
 self.answer_timer = reactor.callFromThread(reactor.callLater, self.auto_answer_interval,
self.session.accept, self.session.proposed_streams)

 # start ringing
 application = SIPSessionApplication()
 self.wave_ringtone = None
 if application.active_session is None:
 if IncomingCallInitializer.sessions == 1:
 ringtone = self.session.account.sounds.audio_inbound.sound_file if
self.session.account.sounds.audio_inbound is not None else None
 if ringtone:

 344

 self.wave_ringtone = WavePlayer(SIPApplication.alert_audio_mixer,
ringtone.path.normalized, volume=ringtone.volume, loop_count=0, pause_time=2)
 SIPApplication.alert_audio_bridge.add(self.wave_ringtone)
 self.wave_ringtone.start()
 elif IncomingCallInitializer.tone_ringtone is None:
 IncomingCallInitializer.tone_ringtone = WavePlayer(SIPApplication.voice_audio_mixer,
ResourcePath('sounds/ring_tone.wav').normalized, loop_count=0, pause_time=6)
 SIPApplication.voice_audio_bridge.add(IncomingCallInitializer.tone_ringtone)
 IncomingCallInitializer.tone_ringtone.start()
 self.session.send_ring_indication()

 # ask question
 identity = str(self.session.remote_identity.uri)
 if self.session.remote_identity.display_name:
 identity = '"%s" <%s>' % (self.session.remote_identity.display_name, identity)
 streams = '/'.join(stream.type for stream in self.session.proposed_streams)
 self.question = Question("Incoming %s from '%s', do you want to accept?
(a)ccept/(r)eject/(b)usy" % (streams, identity), 'arbi', bold=True)
 notification_center.add_observer(self, sender=self.question)
 ui = UI()
 ui.add_question(self.question)

 def handle_notification(self, notification):
 handler = getattr(self, '_NH_%s' % notification.name, Null())
 handler(notification)

 def _NH_UIQuestionGotAnswer(self, notification):
 notification_center = NotificationCenter()
 ui = UI()
 notification_center.remove_observer(self, sender=notification.sender)
 answer = notification.data.answer
 self.question = None
 if answer == 'a':
 self.session.accept(self.session.proposed_streams)
 ui.status = 'Accepting...'
 elif answer == 'r':
 self.session.reject()
 ui.status = 'Rejecting...'
 elif answer == 'b':
 self.session.reject(486)
 ui.status = 'Sending Busy Here...'

 if self.wave_ringtone:
 self.wave_ringtone.stop()
 self.wave_ringtone = None
 if IncomingCallInitializer.sessions > 1:
 if IncomingCallInitializer.tone_ringtone is None:
 IncomingCallInitializer.tone_ringtone = WavePlayer(SIPApplication.voice_audio_mixer,
ResourcePath('sounds/ring_tone.wav').normalized, loop_count=0, pause_time=6)
 SIPApplication.voice_audio_bridge.add(IncomingCallInitializer.tone_ringtone)
 IncomingCallInitializer.tone_ringtone.start()
 elif IncomingCallInitializer.tone_ringtone:
 IncomingCallInitializer.tone_ringtone.stop()
 IncomingCallInitializer.tone_ringtone = None
 if self.answer_timer is not None and self.answer_timer.active():
 self.answer_timer.cancel()

 def _NH_SIPSessionWillStart(self, notification):
 ui = UI()
 if self.question is not None:
 notification_center = NotificationCenter()
 notification_center.remove_observer(self, sender=self.question)
 ui.remove_question(self.question)
 self.question = None
 ui.status = 'Connecting...'

 def _NH_SIPSessionDidStart(self, notification):
 notification_center = NotificationCenter()
 session = notification.sender
 notification_center.remove_observer(self, sender=session)
 IncomingCallInitializer.sessions -= 1
 application = SIPSessionApplication()

 ui = UI()
 ui.status = 'Connected'
 reactor.callLater(2, setattr, ui, 'status', None)

 identity = str(session.remote_identity.uri)
 if session.remote_identity.display_name:
 identity = '"%s" <%s>' % (session.remote_identity.display_name, identity)
 send_notice("SIP session with '%s' established" % identity)
 for stream in notification.data.streams:

SIP	 SIMPLE	 CLIENT	 SDK 345

 345

 if isinstance(stream, AudioStream):
 send_notice('Audio stream using "%s" codec at %sHz' % (stream.codec,
stream.sample_rate))
 if stream.ice_active:
 send_notice('Audio RTP endpoints %s:%d (ICE type %s) <-> %s:%d (ICE type %s)' %
(stream.local_rtp_address, stream.local_rtp_port, stream.local_rtp_candidate_type,
stream.remote_rtp_address, stream.remote_rtp_port, stream.remote_rtp_candidate_type))
 else:
 send_notice('Audio RTP endpoints %s:%d <-> %s:%d' % (stream.local_rtp_address,
stream.local_rtp_port, stream.remote_rtp_address, stream.remote_rtp_port))
 if stream.srtp_active:
 send_notice('RTP audio stream is encrypted')
 if session.remote_user_agent is not None:
 send_notice('Remote SIP User Agent is "%s"' % session.remote_user_agent)

 def _NH_SIPSessionDidFail(self, notification):
 notification_center = NotificationCenter()
 ui = UI()
 session = notification.sender
 notification_center.remove_observer(self, sender=session)

 ui.status = None

 if self.question is not None:
 notification_center.remove_observer(self, sender=self.question)
 ui.remove_question(self.question)
 self.question = None

 IncomingCallInitializer.sessions -= 1
 if self.wave_ringtone:
 self.wave_ringtone.stop()
 self.wave_ringtone = None
 if IncomingCallInitializer.sessions == 0 and IncomingCallInitializer.tone_ringtone is not
None:
 IncomingCallInitializer.tone_ringtone.stop()
 IncomingCallInitializer.tone_ringtone = None
 if notification.data.failure_reason == 'user request' and notification.data.code == 487:
 send_notice('SIP session cancelled by user')
 if notification.data.failure_reason == 'Call completed elsewhere' and notification.data.code
== 487:
 send_notice('SIP session cancelled, call was answered elsewhere')
 elif notification.data.failure_reason == 'user request':
 send_notice('SIP session rejected (%d %s)' % (notification.data.code,
notification.data.reason))
 else:
 send_notice('SIP session failed: %s' % notification.data.failure_reason)

class OutgoingProposalHandler(object):
 implements(IObserver)

 def __init__(self, session, audio=False, chat=False):
 self.session = session
 self.stream = None
 if audio:
 self.stream = AudioStream(session.account)
 if chat:
 self.stream = ChatStream(session.account)
 if not self.stream:
 raise ValueError("Need to specify exactly one stream")

 def start(self):
 notification_center = NotificationCenter()
 notification_center.add_observer(self, sender=self.session)
 try:
 self.session.add_stream(self.stream)
 except IllegalStateError:
 notification_center.remove_observer(self, sender=self.session)
 raise

 remote_identity = str(self.session.remote_identity.uri)
 if self.session.remote_identity.display_name:
 remote_identity = '"%s" <%s>' % (self.session.remote_identity.display_name,
remote_identity)
 send_notice("Proposing %s to '%s'..." % (self.stream.type, remote_identity))

 def handle_notification(self, notification):
 handler = getattr(self, '_NH_%s' % notification.name, Null())
 handler(notification)

 def _NH_SIPSessionGotAcceptProposal(self, notification):
 notification_center = NotificationCenter()

 346

 notification_center.remove_observer(self, sender=self.session)
 application = SIPSessionApplication()
 application.sessions_with_proposals.remove(notification.sender)
 send_notice('Proposal accepted')

 def _NH_SIPSessionGotRejectProposal(self, notification):
 notification_center = NotificationCenter()
 notification_center.remove_observer(self, sender=self.session)
 application = SIPSessionApplication()
 application.sessions_with_proposals.remove(notification.sender)

 ui = UI()
 ui.status = None
 if notification.data.code == 487:
 send_notice('Proposal cancelled (%d %s)' % (notification.data.code,
notification.data.reason))
 else:
 send_notice('Proposal rejected (%d %s)' % (notification.data.code,
notification.data.reason))

 def _NH_SIPSessionDidEnd(self, notification):
 notification_center = NotificationCenter()
 notification_center.remove_observer(self, sender=self.session)

class IncomingProposalHandler(object):
 implements(IObserver)

 sessions = 0
 tone_ringtone = None

 def __init__(self, session):
 self.session = session
 self.question = None

 def start(self):
 IncomingProposalHandler.sessions += 1
 notification_center = NotificationCenter()
 notification_center.add_observer(self, sender=self.session)

 # start ringing
 if IncomingProposalHandler.tone_ringtone is None:
 IncomingProposalHandler.tone_ringtone = WavePlayer(SIPApplication.voice_audio_mixer,
ResourcePath('sounds/ring_tone.wav').normalized, loop_count=0, pause_time=6)
 SIPApplication.voice_audio_bridge.add(IncomingProposalHandler.tone_ringtone)
 IncomingProposalHandler.tone_ringtone.start()
 self.session.send_ring_indication()

 # ask question
 identity = str(self.session.remote_identity.uri)
 if self.session.remote_identity.display_name:
 identity = '"%s" <%s>' % (self.session.remote_identity.display_name, identity)
 streams = ', '.join(stream.type for stream in self.session.proposed_streams)
 self.question = Question("'%s' wants to add %s, do you want to accept? (a)ccept/(r)eject" %
(identity, streams), 'ar', bold=True)
 notification_center.add_observer(self, sender=self.question)
 ui = UI()
 ui.add_question(self.question)

 def handle_notification(self, notification):
 handler = getattr(self, '_NH_%s' % notification.name, Null())
 handler(notification)

 def _NH_UIQuestionGotAnswer(self, notification):
 notification_center = NotificationCenter()
 ui = UI()
 notification_center.remove_observer(self, sender=notification.sender)
 answer = notification.data.answer
 self.question = None
 if answer == 'a':
 self.session.accept_proposal(self.session.proposed_streams)
 ui.status = 'Accepting proposal...'
 elif answer == 'r':
 self.session.reject_proposal()
 ui.status = 'Rejecting proposal...'

 if IncomingProposalHandler.sessions == 1 and IncomingProposalHandler.tone_ringtone:
 IncomingProposalHandler.tone_ringtone.stop()
 IncomingProposalHandler.tone_ringtone = None

 def _NH_SIPSessionGotAcceptProposal(self, notification):
 notification_center = NotificationCenter()

SIP	 SIMPLE	 CLIENT	 SDK 347

 347

 session = notification.sender
 notification_center.remove_observer(self, sender=session)
 application = SIPSessionApplication()
 application.sessions_with_proposals.remove(notification.sender)
 IncomingProposalHandler.sessions -= 1

 ui = UI()
 ui.status = None
 send_notice('Proposal accepted')

 def _NH_SIPSessionGotRejectProposal(self, notification):
 notification_center = NotificationCenter()
 session = notification.sender
 notification_center.remove_observer(self, sender=session)
 application = SIPSessionApplication()
 application.sessions_with_proposals.remove(notification.sender)
 IncomingProposalHandler.sessions -= 1

 ui = UI()
 ui.status = None
 if notification.data.code == 487:
 send_notice('Proposal cancelled (%d %s)' % (notification.data.code,
notification.data.reason))
 else:
 send_notice('Proposal rejected (%d %s)' % (notification.data.code,
notification.data.reason))

 if IncomingProposalHandler.tone_ringtone:
 IncomingProposalHandler.tone_ringtone.stop()
 IncomingProposalHandler.tone_ringtone = None

 if self.question is not None:
 notification_center.remove_observer(self, sender=self.question)
 ui.remove_question(self.question)
 self.question = None

 def _NH_SIPSessionHadProposalFailure(self, notification):
 notification_center = NotificationCenter()
 session = notification.sender
 notification_center.remove_observer(self, sender=session)
 IncomingProposalHandler.sessions -= 1

 ui = UI()
 ui.status = None
 send_notice('Proposal failed (%s)' % notification.data.failure_reason)

 def _NH_SIPSessionDidEnd(self, notification):
 notification_center = NotificationCenter()
 ui = UI()
 session = notification.sender
 notification_center.remove_observer(self, sender=session)

 ui.status = None

 if self.question is not None:
 notification_center.remove_observer(self, sender=self.question)
 ui.remove_question(self.question)
 self.question = None

 IncomingProposalHandler.sessions -= 1
 if IncomingProposalHandler.sessions == 0 and IncomingProposalHandler.tone_ringtone is not
None:
 IncomingProposalHandler.tone_ringtone.stop()
 IncomingProposalHandler.tone_ringtone = None

class OutgoingTransferHandler(object):
 implements(IObserver)

 def __init__(self, account, target, filepath):
 self.account = account
 self.target = target
 self.filepath = filepath
 self.file_selector = None
 self.finished = False
 self.hash_compute_proc = None
 self.session = None
 self.wave_ringtone = None

 @run_in_green_thread
 def start(self):
 if isinstance(self.account, BonjourAccount) and '@' not in self.target:

 348

 send_notice('Bonjour mode requires a host in the destination address')
 return
 if '@' not in self.target:
 self.target = '%s@%s' % (self.target, self.account.id.domain)
 if not self.target.startswith('sip:') and not self.target.startswith('sips:'):
 self.target = 'sip:' + self.target
 try:
 self.target = SIPURI.parse(self.target)
 except SIPCoreError:
 send_notice('Illegal SIP URI: %s' % self.target)
 else:
 send_notice('Computing hash...')
 def compute_hash():
 try:
 self.file_selector = FileSelector.for_file(self.filepath)
 except Exception, e:
 send_notice('Failed to read file "%s": %s' % (self.filepath, e))
 self.hash_compute_proc = proc.spawn(compute_hash)

 if '.' not in self.target.host and not isinstance(self.account, BonjourAccount):
 self.target.host = '%s.%s' % (self.target.host, self.account.id.domain)
 lookup = DNSLookup()
 notification_center = NotificationCenter()
 notification_center.add_observer(self, sender=lookup)
 settings = SIPSimpleSettings()
 if isinstance(self.account, Account) and self.account.sip.outbound_proxy is not None:
 uri = SIPURI(host=self.account.sip.outbound_proxy.host,
port=self.account.sip.outbound_proxy.port, parameters={'transport':
self.account.sip.outbound_proxy.transport})
 else:
 uri = self.target
 lookup.lookup_sip_proxy(uri, settings.sip.transport_list)

 def handle_notification(self, notification):
 handler = getattr(self, '_NH_%s' % notification.name, Null())
 handler(notification)

 def _NH_DNSLookupDidSucceed(self, notification):
 notification_center = NotificationCenter()
 notification_center.remove_observer(self, sender=notification.sender)

 self.hash_compute_proc.wait()
 if self.file_selector is None:
 return

 self.session = Session(self.account)
 notification_center.add_observer(self, sender=self.session)
 self.session.connect(ToHeader(self.target), routes=notification.data.result,
streams=[FileTransferStream(self.account, self.file_selector)])

 def _NH_DNSLookupDidFail(self, notification):
 send_notice('File transfer to %s failed: DNS lookup error: %s' % (self.target,
notification.data.error))
 notification_center = NotificationCenter()
 notification_center.remove_observer(self, sender=notification.sender)

 def _NH_SIPSessionNewOutgoing(self, notification):
 session = notification.sender
 local_identity = str(session.local_identity.uri)
 if session.local_identity.display_name:
 local_identity = '"%s" <%s>' % (session.local_identity.display_name, local_identity)
 remote_identity = str(session.remote_identity.uri)
 if session.remote_identity.display_name:
 remote_identity = '"%s" <%s>' % (session.remote_identity.display_name, remote_identity)
 send_notice("Initiating file transfer from '%s' to '%s' via %s..." % (local_identity,
remote_identity, session.route))

 def _NH_SIPSessionGotRingIndication(self, notification):
 settings = SIPSimpleSettings()
 ui = UI()
 ringtone = settings.sounds.audio_outbound
 if ringtone:
 self.wave_ringtone = WavePlayer(SIPApplication.voice_audio_mixer,
ringtone.path.normalized, volume=ringtone.volume, loop_count=0, pause_time=2)
 SIPApplication.voice_audio_bridge.add(self.wave_ringtone)
 self.wave_ringtone.start()
 ui.status = 'Ringing...'

 def _NH_SIPSessionWillStart(self, notification):
 ui = UI()
 if self.wave_ringtone:
 self.wave_ringtone.stop()

SIP	 SIMPLE	 CLIENT	 SDK 349

 349

 ui.status = 'Connecting...'

 notification_center = NotificationCenter()
 notification_center.add_observer(self, sender=notification.sender.proposed_streams[0])

 def _NH_SIPSessionDidStart(self, notification):
 session = notification.sender

 ui = UI()
 ui.status = 'File transfer connected'

 identity = str(session.remote_identity.uri)
 if session.remote_identity.display_name:
 identity = '"%s" <%s>' % (session.remote_identity.display_name, identity)
 stream = session.streams[0]
 send_notice("File transfer for %s to '%s' started" % (stream.file_selector.name, identity))

 def _NH_SIPSessionDidFail(self, notification):
 notification_center = NotificationCenter()
 session = notification.sender
 notification_center.remove_observer(self, sender=session)

 ui = UI()
 ui.status = None

 if self.wave_ringtone:
 self.wave_ringtone.stop()
 if notification.data.failure_reason == 'user request' and notification.data.code == 487:
 send_notice('File transfer cancelled')
 elif notification.data.failure_reason == 'user request':
 send_notice('File transfer rejected by user (%d %s)' % (notification.data.code,
notification.data.reason))
 else:
 send_notice('File transfer failed: %s' % notification.data.failure_reason)

 def _NH_SIPSessionDidEnd(self, notification):
 notification_center = NotificationCenter()
 session = notification.sender
 notification_center.remove_observer(self, sender=session)
 notification_center.remove_observer(self, sender=session.streams[0] if session.streams else
session.proposed_streams[0])

 ui = UI()
 ui.status = None

 if not self.finished:
 send_notice('File transfer of %s canceled by %s party' % (os.path.basename(self.filepath),
notification.data.originator))

 def _NH_FileTransferStreamDidDeliverChunk(self, notification):
 ui = UI()
 ui.status = '%s: %s%%' % (os.path.basename(self.filepath),
notification.data.transferred_bytes*100//notification.data.file_size)

 def _NH_FileTransferStreamDidNotDeliverChunk(self, notification):
 send_notice('Failed to deliver chunk within file transfer of %s (%d %s)' %
(os.path.basename(self.filepath), notification.data.code, notification.data.reason))

 def _NH_FileTransferStreamDidFinish(self, notification):
 self.finished = True
 send_notice('File transfer of %s finished' % os.path.basename(self.filepath))
 self.session.end()

class IncomingTransferHandler(object):
 implements(IObserver)

 sessions = 0
 tone_ringtone = None

 def __init__(self, session, auto_answer_interval=None):
 self.session = session
 self.auto_answer_interval = auto_answer_interval
 self.file = None
 self.filename = None
 self.file_write_queue = EventQueue(self.write_chunk, name='File writing thread')
 self.finished = False
 self.hash = None
 self.question = None
 self.wave_ringtone = None

 def start(self):

 350

 settings = SIPSimpleSettings()
 stream = self.session.proposed_streams[0]
 self.file_selector = stream.file_selector
 self.filename = filename = os.path.join(settings.file_transfer.directory.normalized,
self.file_selector.name)
 i = 1
 while os.path.exists(filename):
 filename = '%s.%d' % (self.filename, i)
 i += 1
 self.filename = filename
 try:
 self.file = open(self.filename, 'wb')
 except Exception, e:
 send_notice('Failed to open file "%s" for writing: %s' % (self.filename, e))
 self.session.reject(486)
 return
 self.hash = hashlib.sha1()

 IncomingTransferHandler.sessions += 1
 notification_center = NotificationCenter()
 notification_center.add_observer(self, sender=self.session)

 # start auto-answer
 self.answer_timer = None
 if self.auto_answer_interval == 0:
 self.session.accept(self.session.proposed_streams)
 return
 elif self.auto_answer_interval > 0:
 self.answer_timer = reactor.callFromThread(reactor.callLater, self.auto_answer_interval,
self.session.accept, self.session.proposed_streams)

 # start ringing
 application = SIPSessionApplication()
 if application.active_session is None:
 if IncomingTransferHandler.sessions == 1:
 ringtone = self.session.account.sounds.audio_inbound.sound_file if
self.session.account.sounds.audio_inbound is not None else None
 if ringtone:
 self.wave_ringtone = WavePlayer(SIPApplication.alert_audio_mixer,
ringtone.path.normalized, volume=ringtone.volume, loop_count=0, pause_time=2)
 SIPApplication.alert_audio_bridge.add(self.wave_ringtone)
 self.wave_ringtone.start()
 elif IncomingTransferHandler.tone_ringtone is None:
 IncomingTransferHandler.tone_ringtone = WavePlayer(SIPApplication.voice_audio_mixer,
ResourcePath('sounds/ring_tone.wav').normalized, loop_count=0, pause_time=6)
 SIPApplication.voice_audio_bridge.add(IncomingTransferHandler.tone_ringtone)
 IncomingTransferHandler.tone_ringtone.start()
 self.session.send_ring_indication()

 # ask question
 identity = str(self.session.remote_identity.uri)
 if self.session.remote_identity.display_name:
 identity = '"%s" <%s>' % (self.session.remote_identity.display_name, identity)
 self.question = Question("Incoming file transfer for %s from '%s', do you want to accept?
(a)ccept/(r)eject" % (self.file_selector.name, identity), 'ari', bold=True)
 notification_center.add_observer(self, sender=self.question)
 ui = UI()
 ui.add_question(self.question)

 def write_chunk(self, data):
 if data is not None:
 self.file.write(data)
 self.hash.update(data)
 else:
 self.file.close()
 if self.finished:
 local_hash = 'sha1:' + ':'.join(re.findall(r'..', self.hash.hexdigest().upper()))
 remote_hash = self.file_selector.hash
 if local_hash != remote_hash:
 send_notice('Warning: hash of transferred file does not match the remote hash
(file may have changed).')

 def handle_notification(self, notification):
 handler = getattr(self, '_NH_%s' % notification.name, Null())
 handler(notification)

 def _NH_UIQuestionGotAnswer(self, notification):
 notification_center = NotificationCenter()
 ui = UI()
 notification_center.remove_observer(self, sender=notification.sender)
 answer = notification.data.answer
 self.question = None

SIP	 SIMPLE	 CLIENT	 SDK 351

 351

 if answer == 'a':
 self.session.accept(self.session.proposed_streams)
 ui.status = 'Accepting...'
 elif answer == 'r':
 self.session.reject()
 ui.status = 'Rejecting...'

 if IncomingTransferHandler.sessions == 1:
 if self.wave_ringtone:
 self.wave_ringtone.stop()
 self.wave_ringtone = None
 if IncomingTransferHandler.tone_ringtone:
 IncomingTransferHandler.tone_ringtone.stop()
 IncomingTransferHandler.tone_ringtone = None
 if self.answer_timer is not None and self.answer_timer.active():
 self.answer_timer.cancel()

 def _NH_SIPSessionWillStart(self, notification):
 ui = UI()
 if self.question is not None:
 notification_center = NotificationCenter()
 notification_center.remove_observer(self, sender=self.question)
 ui.remove_question(self.question)
 self.question = None
 ui.status = 'Connecting...'

 notification_center = NotificationCenter()
 notification_center.add_observer(self, sender=notification.sender.proposed_streams[0])

 def _NH_SIPSessionDidStart(self, notification):
 session = notification.sender
 IncomingCallInitializer.sessions -= 1

 ui = UI()
 ui.status = 'File transfer connected'

 identity = str(session.remote_identity.uri)
 if session.remote_identity.display_name:
 identity = '"%s" <%s>' % (session.remote_identity.display_name, identity)
 send_notice("File transfer for %s with '%s' started" % (self.file_selector.name, identity))

 self.file_write_queue.start()

 if IncomingTransferHandler.sessions == 1:
 if self.wave_ringtone:
 self.wave_ringtone.stop()
 self.wave_ringtone = None
 if IncomingTransferHandler.tone_ringtone:
 IncomingTransferHandler.tone_ringtone.stop()
 IncomingTransferHandler.tone_ringtone = None

 def _NH_SIPSessionDidFail(self, notification):
 notification_center = NotificationCenter()
 ui = UI()
 session = notification.sender
 notification_center.remove_observer(self, sender=session)

 ui.status = None

 if self.question is not None:
 notification_center.remove_observer(self, sender=self.question)
 ui.remove_question(self.question)
 self.question = None

 IncomingTransferHandler.sessions -= 1
 if self.wave_ringtone:
 self.wave_ringtone.stop()
 self.wave_ringtone = None
 if IncomingTransferHandler.sessions == 0 and IncomingTransferHandler.tone_ringtone is not
None:
 IncomingTransferHandler.tone_ringtone.stop()
 IncomingTransferHandler.tone_ringtone = None
 if notification.data.failure_reason == 'user request' and notification.data.code == 487:
 send_notice('File transfer cancelled by user')
 elif notification.data.failure_reason == 'user request':
 send_notice('File transfer rejected (%d %s)' % (notification.data.code,
notification.data.reason))
 else:
 send_notice('File transfer failed: %s' % notification.data.failure_reason)

 def _NH_SIPSessionDidEnd(self, notification):
 notification_center = NotificationCenter()

 352

 session = notification.sender
 notification_center.remove_observer(self, sender=session)
 notification_center.remove_observer(self, sender=session.streams[0] if session.streams else
session.proposed_streams[0])

 ui = UI()
 ui.status = None

 if not self.finished:
 send_notice('File transfer of %s canceled by %s party' %
(os.path.basename(self.file_selector.name), notification.data.originator))

 self.file_write_queue.put(None)
 self.file_write_queue.stop()

 def _NH_FileTransferStreamGotChunk(self, notification):
 ui = UI()
 ui.status = '%s: %s%%' % (os.path.basename(self.file_selector.name),
notification.data.transferred_bytes*100//notification.data.file_size)
 self.file_write_queue.put(notification.data.content)

 def _NH_FileTransferStreamDidFinish(self, notification):
 self.finished = True
 send_notice('File transfer of %s finished (file saved to "%s").' %
(os.path.basename(self.file_selector.name), self.filename))

class SIPSessionApplication(SIPApplication):
 # public methods
 #

 def __init__(self):
 self.account = None
 self.options = None
 self.target = None

 self.active_session = None
 self.outgoing_session = None
 self.connected_sessions = []
 self.sessions_with_proposals = set()
 self.hangup_timers = {}
 self.neighbours = set()
 self.registration_succeeded = False
 self.stopped_event = Event()

 self.ip_address_monitor = IPAddressMonitor()
 self.logger = None
 self.rtp_statistics = None
 self.nat_detector = None

 self.hold_tone = None

 self.ignore_local_hold = False
 self.ignore_local_unhold = False

 def start(self, target, options):
 notification_center = NotificationCenter()
 ui = UI()

 self.options = options
 self.target = target
 self.logger = Logger(sip_to_stdout=options.trace_sip, msrp_to_stdout=options.trace_msrp,
 pjsip_to_stdout=options.trace_pjsip,
notifications_to_stdout=options.trace_notifications)

 notification_center.add_observer(self, sender=self)
 notification_center.add_observer(self, sender=ui)
 notification_center.add_observer(self, name='SIPSessionNewIncoming')
 notification_center.add_observer(self, name='SIPSessionNewOutgoing')
 notification_center.add_observer(self, name='AudioStreamDidChangeRTPParameters')
 notification_center.add_observer(self, name='AudioStreamICENegotiationDidSucceed')
 notification_center.add_observer(self, name='AudioStreamICENegotiationDidFail')

 log.level.current = log.level.WARNING # get rid of twisted messages
 control_bindings={'s': 'trace sip',
 'm': 'trace msrp',
 'j': 'trace pjsip',
 'n': 'trace notifications',
 'h': 'hangup',
 'r': 'record',
 'i': 'input',
 'o': 'output',

SIP	 SIMPLE	 CLIENT	 SDK 353

 353

 'a': 'alert',
 'u': 'mute',
 ',': 'echo -',
 '<': 'echo -',
 '.': 'echo +',
 '>': 'echo +',
 ' ': 'hold',
 'q': 'quit',
 '/': 'help',
 '?': 'help',
 '0': 'dtmf 0',
 '1': 'dtmf 1',
 '2': 'dtmf 2',
 '3': 'dtmf 3',
 '4': 'dtmf 4',
 '5': 'dtmf 5',
 '6': 'dtmf 6',
 '7': 'dtmf 7',
 '8': 'dtmf 8',
 '9': 'dtmf 9',
 '*': 'dtmf *',
 '#': 'dtmf #',
 'A': 'dtmf A',
 'B': 'dtmf B',
 'C': 'dtmf C',
 'D': 'dtmf D'}
 ui.start(control_bindings=control_bindings, display_text=False)

 Account.register_extension(AccountExtension)
 BonjourAccount.register_extension(AccountExtension)
 SIPSimpleSettings.register_extension(SIPSimpleSettingsExtension)
 try:
 SIPApplication.start(self, FileBackend(options.config_file or config_filename))
 except ConfigurationError, e:
 send_notice("Failed to load sipclient's configuration: %s\n" % str(e), bold=False)
 send_notice("If an old configuration file is in place, delete it or move it and recreate
the configuration using the sip_settings script.", bold=False)
 ui.stop()
 self.stopped_event.set()

 # notification handlers
 #

 def _NH_SIPApplicationWillStart(self, notification):
 account_manager = AccountManager()
 notification_center = NotificationCenter()
 settings = SIPSimpleSettings()
 ui = UI()

 for account in account_manager.iter_accounts():
 if isinstance(account, Account):
 account.sip.register = False
 if self.options.account is None:
 self.account = account_manager.default_account
 else:
 possible_accounts = [account for account in account_manager.iter_accounts() if
self.options.account in account.id and account.enabled]
 if len(possible_accounts) > 1:
 send_notice('More than one account exists which matches %s: %s' %
(self.options.account, ', '.join(sorted(account.id for account in possible_accounts))), bold=False)
 self.stop()
 return
 elif len(possible_accounts) == 0:
 send_notice('No enabled account which matches %s was found. Available and enabled
accounts: %s' % (self.options.account, ', '.join(sorted(account.id for account in
account_manager.get_accounts() if account.enabled))), bold=False)
 self.stop()
 return
 else:
 self.account = possible_accounts[0]
 notification_center.add_observer(self, sender=self.account)
 if isinstance(self.account, Account):
 self.account.sip.register = True
 send_notice('Using account %s' % self.account.id, bold=False)
 ui.prompt = Prompt(self.account.id, foreground='default')

 self.logger.start()
 if settings.logs.trace_sip and self.logger._siptrace_filename is not None:
 send_notice('Logging SIP trace to file "%s"' % self.logger._siptrace_filename, bold=False)
 if settings.logs.trace_msrp and self.logger._msrptrace_filename is not None:

 354

 send_notice('Logging MSRP trace to file "%s"' % self.logger._msrptrace_filename,
bold=False)
 if settings.logs.trace_pjsip and self.logger._pjsiptrace_filename is not None:
 send_notice('Logging PJSIP trace to file "%s"' % self.logger._pjsiptrace_filename,
bold=False)
 if settings.logs.trace_notifications and self.logger._notifications_filename is not None:
 send_notice('Logging notifications trace to file "%s"' %
self.logger._notifications_filename, bold=False)

 if self.options.disable_sound:
 settings.audio.input_device = None
 settings.audio.output_device = None
 settings.audio.alert_device = None

 if isinstance(self.account, Account):
 self.nat_detector = NATDetector()

 def _NH_SIPApplicationDidStart(self, notification):
 settings = SIPSimpleSettings()

 self.ip_address_monitor.start()

 # set the file transfer directory if it's not set
 if settings.file_transfer.directory is None:
 settings.file_transfer.directory = 'file_transfers'

 # display a list of available devices
 self._CH_devices()

 send_notice('Type /help to see a list of available commands.', bold=False)

 if self.target is not None:
 call_initializer = OutgoingCallInitializer(self.account, self.target, audio=True)
 call_initializer.start()

 def _NH_SIPApplicationWillEnd(self, notification):
 self.ip_address_monitor.stop()

 def _NH_SIPApplicationDidEnd(self, notification):
 ui = UI()
 ui.stop()
 self.stopped_event.set()

 def _NH_UIInputGotCommand(self, notification):
 handler = getattr(self, '_CH_%s' % notification.data.command, None)
 if handler is not None:
 try:
 handler(*notification.data.args)
 except TypeError:
 send_notice('Illegal use of command /%s. Type /help for a list of available commands.'
% notification.data.command)
 else:
 send_notice('Unknown command /%s. Type /help for a list of available commands.' %
notification.data.command)

 def _NH_UIInputGotText(self, notification):
 msrp_chat = None
 if self.active_session is not None:
 try:
 msrp_chat = [stream for stream in self.active_session.streams if isinstance(stream,
ChatStream)][0]
 except IndexError:
 pass
 if msrp_chat is None:
 send_notice('No active chat session')
 return
 msrp_chat.send_message(notification.data.text)
 if msrp_chat.local_identity.display_name:
 local_identity = msrp_chat.local_identity.display_name
 else:
 local_identity = str(msrp_chat.local_identity.uri)
 ui = UI()
 ui.write(RichText('%s> ' % local_identity, foreground='darkred') + notification.data.text)

 def _NH_SIPEngineGotException(self, notification):
 lines = ['An exception occured within the SIP core:']
 lines.extend(notification.data.traceback.split('\n'))
 send_notice(lines)

 def _NH_SIPAccountRegistrationDidSucceed(self, notification):
 if self.registration_succeeded:
 return

SIP	 SIMPLE	 CLIENT	 SDK 355

 355

 contact_header = notification.data.contact_header
 contact_header_list = notification.data.contact_header_list
 expires = notification.data.expires
 registrar = notification.data.registrar
 lines = ['%s Registered contact "%s" for sip:%s at %s:%d;transport=%s (expires in %d
seconds).' % (datetime.now().replace(microsecond=0), contact_header.uri, self.account.id,
registrar.address, registrar.port, registrar.transport, expires)]
 if len(contact_header_list) > 1:
 lines.append('Other registered contacts:')
 lines.extend(' %s (expires in %s seconds)' % (str(other_contact_header.uri),
other_contact_header.expires) for other_contact_header in contact_header_list if
other_contact_header.uri != notification.data.contact_header.uri)
 send_notice(lines)

 self.registration_succeeded = True

 def _NH_SIPAccountRegistrationDidFail(self, notification):
 send_notice('%s Failed to register contact for sip:%s: %s (retrying in %.2f seconds)' %
(datetime.now().replace(microsecond=0), self.account.id, notification.data.error,
notification.data.timeout))
 self.registration_succeeded = False

 def _NH_SIPAccountRegistrationDidEnd(self, notification):
 send_notice('%s Registration ended.' % datetime.now().replace(microsecond=0))

 def _NH_BonjourAccountRegistrationDidSucceed(self, notification):
 send_notice('%s Registered Bonjour contact "%s"' % (datetime.now().replace(microsecond=0),
notification.data.name))

 def _NH_BonjourAccountRegistrationDidFail(self, notification):
 send_notice('%s Failed to register Bonjour contact: %s' %
(datetime.now().replace(microsecond=0), notification.data.reason))

 def _NH_BonjourAccountRegistrationDidEnd(self, notification):
 send_notice('%s Registration ended.' % datetime.now().replace(microsecond=0))

 def _NH_BonjourAccountDidAddNeighbour(self, notification):
 if notification.data.uri not in self.neighbours:
 send_notice('%s Discovered Bonjour neighbour: "%s" <%s>' %
(datetime.now().replace(microsecond=0), notification.data.display_name, notification.data.uri))
 self.neighbours.add(BonjourNeighbour(notification.data.uri,
notification.data.display_name))

 def _NH_BonjourAccountDidRemoveNeighbour(self, notification):
 if notification.data.uri in self.neighbours:
 send_notice('%s Bonjour neighbour left: %s' % (datetime.now().replace(microsecond=0),
notification.data.uri))
 self.neighbours.remove(notification.data.uri)

 def _NH_BonjourAccountWillRestartDiscovery(self, notification):
 self.neighbours.clear()

 def _NH_SIPSessionNewIncoming(self, notification):
 session = notification.sender
 transfer_streams = [stream for stream in session.proposed_streams if stream.type == 'file-
transfer']
 # only allow sessions with 0 or 1 file transfers
 if len(transfer_streams) not in (0, 1):
 session.reject(488)
 if transfer_streams:
 transfer_handler = IncomingTransferHandler(session, self.options.auto_answer_interval)
 transfer_handler.start()
 else:
 notification_center = NotificationCenter()
 notification_center.add_observer(self, sender=session)
 call_initializer = IncomingCallInitializer(session, self.options.auto_answer_interval)
 call_initializer.start()

 def _NH_SIPSessionNewOutgoing(self, notification):
 session = notification.sender
 transfer_streams = [stream for stream in session.proposed_streams if stream.type == 'file-
transfer']
 if not transfer_streams:
 notification_center = NotificationCenter()
 notification_center.add_observer(self, sender=session)

 def _NH_SIPSessionDidFail(self, notification):
 notification_center = NotificationCenter()
 notification_center.remove_observer(self, sender=notification.sender)

 def _NH_SIPSessionWillStart(self, notification):
 notification_center = NotificationCenter()

 356

 for stream in notification.sender.proposed_streams:
 notification_center.add_observer(self, sender=stream)

 def _NH_SIPSessionDidStart(self, notification):
 session = notification.sender

 self.connected_sessions.append(session)
 if self.active_session is not None:
 self.active_session.hold()
 self.active_session = session
 self._update_prompt()
 if len(self.connected_sessions) > 1:
 # this displays the conencted sessions
 self._CH_sessions()

 if self.options.auto_hangup_interval is not None:
 if self.options.auto_hangup_interval == 0:
 session.end()
 else:
 timer = reactor.callLater(self.options.auto_hangup_interval, session.end)
 self.hangup_timers[id(session)] = timer

 def _NH_SIPSessionWillEnd(self, notification):
 notification_center = NotificationCenter()
 session = notification.sender
 if id(session) in self.hangup_timers:
 timer = self.hangup_timers[id(session)]
 if timer.active():
 timer.cancel()
 del self.hangup_timers[id(session)]

 hangup_tone = WavePlayer(self.voice_audio_mixer,
ResourcePath('sounds/hangup_tone.wav').normalized)
 notification_center.add_observer(self, sender=hangup_tone)
 self.voice_audio_bridge.add(hangup_tone)
 hangup_tone.start()

 def _NH_SIPSessionDidEnd(self, notification):
 notification_center = NotificationCenter()
 session = notification.sender
 notification_center.remove_observer(self, sender=session)
 for stream in session.streams or session.proposed_streams:
 notification_center.remove_observer(self, sender=stream)

 ui = UI()
 ui.status = None

 identity = str(session.remote_identity.uri)
 if session.remote_identity.display_name:
 identity = '"%s" <%s>' % (session.remote_identity.display_name, identity)
 if notification.data.end_reason == 'user request':
 send_notice('SIP session with %s ended by %s party' % (identity,
notification.data.originator))
 else:
 send_notice('SIP session with %s ended due to error: %s' % (identity,
notification.data.end_reason))
 duration = session.end_time - session.start_time
 seconds = duration.seconds if duration.microseconds < 500000 else duration.seconds+1
 minutes, seconds = seconds / 60, seconds % 60
 hours, minutes = minutes / 60, minutes % 60
 hours += duration.days*24
 if not minutes and not hours:
 duration_text = '%d seconds' % seconds
 elif not hours:
 duration_text = '%02d:%02d' % (minutes, seconds)
 else:
 duration_text = '%02d:%02d:%02d' % (hours, minutes, seconds)
 send_notice('Session duration was %s' % duration_text)

 if session in self.connected_sessions:
 self.connected_sessions.remove(session)
 if session is self.active_session:
 if self.connected_sessions:
 self.active_session = self.connected_sessions[0]
 self.active_session.unhold()
 self.ignore_local_unhold = True
 identity = str(self.active_session.remote_identity.uri)
 if self.active_session.remote_identity.display_name:
 identity = '"%s" <%s>' % (self.active_session.remote_identity.display_name,
identity)
 send_notice('Active SIP session: "%s" (%d/%d)' % (identity,
self.connected_sessions.index(self.active_session)+1, len(self.connected_sessions)))

SIP	 SIMPLE	 CLIENT	 SDK 357

 357

 else:
 self.active_session = None
 self._update_prompt()

 on_hold_streams = [stream for stream in chain(*(session.streams for session in
self.connected_sessions)) if stream.on_hold]
 if not on_hold_streams and self.hold_tone:
 self.hold_tone.stop()

 def _NH_SIPSessionDidChangeHoldState(self, notification):
 session = notification.sender
 if notification.data.on_hold:
 if notification.data.originator == 'remote':
 if session is self.active_session:
 send_notice('Remote party has put the session on hold')
 else:
 identity = str(session.remote_identity.uri)
 if session.remote_identity.display_name:
 identity = '"%s" <%s>' % (session.remote_identity.display_name, identity)
 send_notice('%s has put the session on hold' % identity)
 elif not self.ignore_local_hold:
 if session is self.active_session:
 send_notice('Session is put on hold')
 else:
 identity = str(session.remote_identity.uri)
 if session.remote_identity.display_name:
 identity = '"%s" <%s>' % (session.remote_identity.display_name, identity)
 send_notice('Session with %s is put on hold' % identity)
 else:
 self.ignore_local_hold = False
 else:
 if notification.data.originator == 'remote':
 if session is self.active_session:
 send_notice('Remote party has taken the session out of hold')
 else:
 identity = str(session.remote_identity.uri)
 if session.remote_identity.display_name:
 identity = '"%s" <%s>' % (session.remote_identity.display_name, identity)
 send_notice('%s has taken the session out of hold' % identity)
 elif not self.ignore_local_unhold:
 if session is self.active_session:
 send_notice('Session is taken out of hold')
 else:
 identity = str(session.remote_identity.uri)
 if session.remote_identity.display_name:
 identity = '"%s" <%s>' % (session.remote_identity.display_name, identity)
 send_notice('Session with %s is taken out of hold' % identity)
 else:
 self.ignore_local_unhold = False

 def _NH_SIPSessionGotProposal(self, notification):
 self.sessions_with_proposals.add(notification.sender)
 if notification.data.originator == 'remote':
 proposal_handler = IncomingProposalHandler(notification.sender)
 proposal_handler.start()

 def _NH_SIPSessionDidRenegotiateStreams(self, notification):
 notification_center = NotificationCenter()
 for stream in notification.data.streams:
 if notification.data.action == 'add':
 notification_center.add_observer(self, sender=stream)
 elif notification.data.action == 'remove':
 notification_center.remove_observer(self, sender=stream)

 session = notification.sender
 streams = ', '.join(stream.type for stream in notification.data.streams)
 action = 'added' if notification.data.action == 'add' else 'removed'
 message = '%s party %s %s' % (notification.data.originator.capitalize(), action, streams)
 if session is not self.active_session:
 identity = str(session.remote_identity.uri)
 if session.remote_identity.display_name:
 identity = '"%s" <%s>' % (session.remote_identity.display_name, identity)
 message = '%s in session with %s' % (message, identity)
 send_notice(message)
 self._update_prompt()

 def _NH_AudioStreamGotDTMF(self, notification):
 notification_center = NotificationCenter()
 digit = notification.data.digit
 filename = 'sounds/dtmf_%s_tone.wav' % {'*': 'star', '#': 'pound'}.get(digit, digit)
 wave_player = WavePlayer(self.voice_audio_mixer, ResourcePath(filename).normalized)
 notification_center.add_observer(self, sender=wave_player)

 358

 self.voice_audio_bridge.add(wave_player)
 wave_player.start()
 send_notice('Got DMTF %s' % notification.data.digit)

 def _NH_AudioStreamDidChangeHoldState(self, notification):
 if notification.data.on_hold:
 if not self.hold_tone:
 self.hold_tone = WavePlayer(self.voice_audio_mixer,
ResourcePath('sounds/hold_tone.wav').normalized, loop_count=0, pause_time=30, volume=50)
 self.voice_audio_bridge.add(self.hold_tone)
 self.hold_tone.start()
 else:
 on_hold_streams = [stream for stream in chain(*(session.streams for session in
self.connected_sessions)) if stream is not notification.sender and stream.on_hold]
 if not on_hold_streams and self.hold_tone:
 self.hold_tone.stop()
 self.hold_tone = None

 def _NH_AudioStreamDidChangeRTPParameters(self, notification):
 stream = notification.sender
 send_notice('Audio RTP parameters changed:')
 send_notice('Audio stream using "%s" codec at %sHz' % (stream.codec, stream.sample_rate))
 send_notice('Audio RTP endpoints %s:%d <-> %s:%d' % (stream.local_rtp_address,
stream.local_rtp_port, stream.remote_rtp_address, stream.remote_rtp_port))
 if stream.srtp_active:
 send_notice('RTP audio stream is encrypted')

 def _NH_AudioStreamDidStartRecordingAudio(self, notification):
 send_notice('Recording audio to %s' % notification.data.filename)

 def _NH_AudioStreamDidStopRecordingAudio(self, notification):
 send_notice('Stopped recording audio to %s' % notification.data.filename)

 def _NH_ChatStreamGotMessage(self, notification):
 if notification.data.message.sender.display_name:
 remote_identity = notification.data.message.sender.display_name
 else:
 remote_identity = notification.data.message.sender.uri
 ui = UI()
 ui.write(RichText('%s> ' % remote_identity, foreground='blue') +
notification.data.message.body)

 def _NH_DefaultAudioDeviceDidChange(self, notification):
 SIPApplication._NH_DefaultAudioDeviceDidChange(self, notification)
 if notification.data.changed_input and self.voice_audio_mixer.input_device=='system_default':
 send_notice('Switched default input device to: %s' %
self.voice_audio_mixer.real_input_device)
 if notification.data.changed_output and
self.voice_audio_mixer.output_device=='system_default':
 send_notice('Switched default output device to: %s' %
self.voice_audio_mixer.real_output_device)
 if notification.data.changed_output and
self.alert_audio_mixer.output_device=='system_default':
 send_notice('Switched alert device to: %s' % self.alert_audio_mixer.real_output_device)

 def _NH_AudioDevicesDidChange(self, notification):
 old_devices = set(notification.data.old_devices)
 new_devices = set(notification.data.new_devices)
 added_devices = new_devices - old_devices
 removed_devices = old_devices - new_devices
 changed_input_device = self.voice_audio_mixer.real_input_device in removed_devices
 changed_output_device = self.voice_audio_mixer.real_output_device in removed_devices
 changed_alert_device = self.alert_audio_mixer.real_output_device in removed_devices

 SIPApplication._NH_AudioDevicesDidChange(self, notification)

 if added_devices:
 send_notice('Added audio device(s): %s' % ', '.join(sorted(added_devices)))
 if removed_devices:
 send_notice('Removed audio device(s): %s' % ', '.join(sorted(removed_devices)))
 if changed_input_device:
 send_notice('Input device has been switched to: %s' %
self.voice_audio_mixer.real_input_device)
 if changed_output_device:
 send_notice('Output device has been switched to: %s' %
self.voice_audio_mixer.real_output_device)
 if changed_alert_device:
 send_notice('Alert device has been switched to: %s' %
self.alert_audio_mixer.real_output_device)

 def _NH_WavePlayerDidEnd(self, notification):
 notification_center = NotificationCenter()

SIP	 SIMPLE	 CLIENT	 SDK 359

 359

 notification_center.remove_observer(self, sender=notification.sender)

 def _NH_AudioStreamICENegotiationDidSucceed(self, notification):
 send_notice("ICE negotiation succeeded in %s" % notification.data.duration)

 def _NH_AudioStreamICENegotiationDidFail(self, notification):
 stream = notification.sender
 send_notice("ICE negotiation failed: %s" % notification.data.reason)

 # command handlers
 #

 def _CH_call(self, target):
 if self.outgoing_session is not None:
 send_notice('Please cancel any outgoing sessions before makeing any new ones')
 return
 call_initializer = OutgoingCallInitializer(self.account, target, audio=True, chat=True)
 call_initializer.start()

 def _CH_audio(self, target, chat_option=None):
 if chat_option and chat_option != '+chat':
 raise TypeError()
 if self.outgoing_session is not None:
 send_notice('Please cancel any outgoing sessions before makeing any new ones')
 return
 call_initializer = OutgoingCallInitializer(self.account, target, audio=True,
chat=chat_option=='+chat')
 call_initializer.start()

 def _CH_chat(self, target, audio_option=None):
 if audio_option and audio_option != '+audio':
 raise TypeError()
 if self.outgoing_session is not None:
 send_notice('Please cancel any outgoing sessions before makeing any new ones')
 return
 call_initializer = OutgoingCallInitializer(self.account, target, audio=audio_option=='+audio',
chat=True)
 call_initializer.start()

 def _CH_send(self, target, filepath):
 transfer_handler = OutgoingTransferHandler(self.account, target, filepath)
 transfer_handler.start()

 def _CH_next(self):
 if len(self.connected_sessions) > 1:
 self.active_session.hold()
 self.active_session =
self.connected_sessions[(self.connected_sessions.index(self.active_session)+1) %
len(self.connected_sessions)]
 self.active_session.unhold()
 self.ignore_local_unhold = True
 identity = str(self.active_session.remote_identity.uri)
 if self.active_session.remote_identity.display_name:
 identity = '"%s" <%s>' % (self.active_session.remote_identity.display_name, identity)
 send_notice('Active SIP session: "%s" (%d/%d)' % (identity,
self.connected_sessions.index(self.active_session)+1, len(self.connected_sessions)))
 self._update_prompt()

 def _CH_prev(self):
 if len(self.connected_sessions) > 1:
 self.active_session.hold()
 self.active_session =
self.connected_sessions[self.connected_sessions.index(self.active_session)-1]
 self.active_session.unhold()
 self.ignore_local_unhold = True
 identity = str(self.active_session.remote_identity.uri)
 if self.active_session.remote_identity.display_name:
 identity = '"%s" <%s>' % (self.active_session.remote_identity.display_name, identity)
 send_notice('Active SIP session: "%s" (%d/%d)' % (identity,
self.connected_sessions.index(self.active_session)+1, len(self.connected_sessions)))
 self._update_prompt()

 def _CH_sessions(self):
 if self.connected_sessions:
 lines = ['Connected sessions:']
 for session in self.connected_sessions:
 identity = str(session.remote_identity.uri)
 if session.remote_identity.display_name:
 identity = '"%s" <%s>' % (session.remote_identity.display_name, identity)
 lines.append(' SIP session with %s (%d/%d) - %s' % (identity,
self.connected_sessions.index(session)+1, len(self.connected_sessions), 'active' if session is
self.active_session else 'on hold'))

 360

 if len(self.connected_sessions) > 1:
 lines.append('Use the /next and /prev commands to switch the active session')
 send_notice(lines)
 else:
 send_notice('There are no connected sessions')

 def _CH_neighbours(self):
 if not isinstance(self.account, BonjourAccount):
 send_notice('This command is only available if using the Bonjour account')
 return
 lines = ['Bonjour neighbours:']
 for neighbour in sorted(self.neighbours, key=attrgetter('display_name', 'uri')):
 if neighbour.display_name:
 lines.append(' "%s" <%s>' % (neighbour.display_name, neighbour.uri))
 else:
 lines.append(' %s' % neighbour.uri)
 send_notice(lines)

 def _CH_trace(self, *types):
 if not types:
 lines = []
 lines.append('SIP tracing to console is now %s' % ('active' if self.logger.sip_to_stdout
else 'inactive'))
 lines.append('MSRP tracing to console is now %s' % ('active' if self.logger.msrp_to_stdout
else 'inactive'))
 lines.append('PJSIP tracing to console is now %s' % ('active' if
self.logger.pjsip_to_stdout else 'inactive'))
 lines.append('Notification tracing to console is now %s' % ('active' if
self.logger.notifications_to_stdout else 'inactive'))
 send_notice(lines)
 return

 add_types = [type[1:] for type in types if type[0] == '+']
 remove_types = [type[1:] for type in types if type[0] == '-']
 toggle_types = [type for type in types if type[0] not in ('+', '-')]

 if 'sip' in add_types or ('sip' in toggle_types and not self.logger.sip_to_stdout):
 self.logger.sip_to_stdout = True
 send_notice('SIP tracing to console is now activated')
 elif 'sip' in remove_types or ('sip' in toggle_types and self.logger.sip_to_stdout):
 self.logger.sip_to_stdout = False
 send_notice('SIP tracing to console is now deactivated')

 if 'msrp' in add_types or ('msrp' in toggle_types and not self.logger.msrp_to_stdout):
 self.logger.msrp_to_stdout = True
 send_notice('MSRP tracing to console is now activated')
 elif 'msrp' in remove_types or ('msrp' in toggle_types and self.logger.msrp_to_stdout):
 self.logger.msrp_to_stdout = False
 send_notice('MSRP tracing to console is now deactivated')

 if 'pjsip' in add_types or ('pjsip' in toggle_types and not self.logger.pjsip_to_stdout):
 self.logger.pjsip_to_stdout = True
 send_notice('PJSIP tracing to console is now activated')
 elif 'pjsip' in remove_types or ('pjsip' in toggle_types and self.logger.pjsip_to_stdout):
 self.logger.pjsip_to_stdout = False
 send_notice('PJSIP tracing to console is now deactivated')

 if 'notifications' in add_types or ('notifications' in toggle_types and not
self.logger.notifications_to_stdout):
 self.logger.notifications_to_stdout = True
 send_notice('Notification tracing to console is now activated')
 elif 'notifications' in remove_types or ('notifications' in toggle_types and
self.logger.notifications_to_stdout):
 self.logger.notifications_to_stdout = False
 send_notice('Notification tracing to console is now deactivated')

 def _CH_rtp(self, state='toggle'):
 if state == 'toggle':
 new_state = self.rtp_statistics is None
 elif state == 'on':
 new_state = True
 elif state == 'off':
 new_state = False
 else:
 raise TypeError()
 if (self.rtp_statistics and new_state) or (not self.rtp_statistics and not new_state):
 return
 if new_state:
 self.rtp_statistics = RTPStatisticsThread()
 self.rtp_statistics.start()
 send_notice('Output of RTP statistics on console is now activated')
 else:

SIP	 SIMPLE	 CLIENT	 SDK 361

 361

 self.rtp_statistics.stop()
 self.rtp_statistics = None
 send_notice('Output of RTP statistics on console is now dectivated')

 def _CH_mute(self, state='toggle'):
 if state == 'toggle':
 self.voice_audio_mixer.muted = not self.voice_audio_mixer.muted
 elif state == 'on':
 self.voice_audio_mixer.muted = True
 elif state == 'off':
 self.voice_audio_mixer.muted = False
 send_notice('The microphone is now %s' % ('muted' if self.voice_audio_mixer.muted else
'unmuted'))

 def _CH_input(self, device=None):
 engine = Engine()
 input_devices = [None, 'system_default'] + sorted(engine.input_devices)
 if device is None:
 if self.voice_audio_mixer.input_device in input_devices:
 old_input_device = self.voice_audio_mixer.input_device
 else:
 old_input_device = None
 tries = 0
 while tries < len(input_devices):
 new_input_device = input_devices[(input_devices.index(old_input_device)+1) %
len(input_devices)]
 try:
 self.voice_audio_mixer.set_sound_devices(new_input_device,
self.voice_audio_mixer.output_device, self.voice_audio_mixer.ec_tail_length)
 except SIPCoreError, e:
 tries += 1
 old_input_device = new_input_device
 send_notice('Failed to set input device to %s: %s' % (new_input_device, str(e)))
 else:
 if new_input_device == 'system_default':
 send_notice('Input device changed to %s (system default device)' %
self.voice_audio_mixer.real_input_device)
 else:
 send_notice('Input device changed to %s' % new_input_device)
 break
 else:
 if device == 'None':
 device = None
 elif device not in input_devices:
 send_notice('Unknown input device %s. Type /devices to see a list of available
devices' % device)
 return
 try:
 self.voice_audio_mixer.set_sound_devices(device, self.voice_audio_mixer.output_device,
self.voice_audio_mixer.ec_tail_length)
 except SIPCoreError, e:
 send_notice('Failed to set input device to %s: %s' % (device, str(e)))
 else:
 if device == 'system_default':
 send_notice('Input device changed to %s (system default device)' %
self.voice_audio_mixer.real_input_device)
 else:
 send_notice('Input device changed to %s' % device)

 def _CH_output(self, device=None):
 engine = Engine()
 output_devices = [None, 'system_default'] + sorted(engine.output_devices)
 if device is None:
 if self.voice_audio_mixer.output_device in output_devices:
 old_output_device = self.voice_audio_mixer.output_device
 else:
 old_output_device = None
 tries = 0
 while tries < len(output_devices):
 new_output_device = output_devices[(output_devices.index(old_output_device)+1) %
len(output_devices)]
 try:
 self.voice_audio_mixer.set_sound_devices(self.voice_audio_mixer.input_device,
new_output_device, self.voice_audio_mixer.ec_tail_length)
 except SIPCoreError, e:
 tries += 1
 old_output_device = new_output_device
 send_notice('Failed to set output device to %s: %s' % (new_output_device, str(e)))
 else:
 if new_output_device == 'system_default':
 send_notice('Output device changed to %s (system default device)' %
self.voice_audio_mixer.real_output_device)

 362

 else:
 send_notice('Output device changed to %s' % new_output_device)
 break
 else:
 if device == 'None':
 device = None
 elif device not in output_devices:
 send_notice('Unknown output device %s. Type /devices to see a list of available
devices' % device)
 return
 try:
 self.voice_audio_mixer.set_sound_devices(self.voice_audio_mixer.input_device, device,
self.voice_audio_mixer.ec_tail_length)
 except SIPCoreError, e:
 send_notice('Failed to set output device to %s: %s' % (device, str(e)))
 else:
 if device == 'system_default':
 send_notice('Output device changed to %s (system default device)' %
self.voice_audio_mixer.real_output_device)
 else:
 send_notice('Output device changed to %s' % device)

 def _CH_alert(self, device=None):
 engine = Engine()
 output_devices = [None, 'system_default'] + sorted(engine.output_devices)
 if device is None:
 if self.alert_audio_mixer.output_device in output_devices:
 old_output_device = self.alert_audio_mixer.output_device
 else:
 old_output_device = None
 tries = 0
 while tries < len(output_devices):
 new_output_device = output_devices[(output_devices.index(old_output_device)+1) %
len(output_devices)]
 try:
 self.alert_audio_mixer.set_sound_devices(self.alert_audio_mixer.input_device,
new_output_device, self.alert_audio_mixer.ec_tail_length)
 except SIPCoreError, e:
 tries += 1
 old_output_device = new_output_device
 send_notice('Failed to set alert device to %s: %s' % (new_output_device, str(e)))
 else:
 if new_output_device == 'system_default':
 send_notice('Alert device changed to %s (system default device)' %
self.alert_audio_mixer.real_output_device)
 else:
 send_notice('Alert device changed to %s' % new_output_device)
 break
 else:
 if device == 'None':
 device = None
 elif device not in output_devices:
 send_notice('Unknown output device %s. Type /devices to see a list of available
devices' % device)
 return
 try:
 self.alert_audio_mixer.set_sound_devices(self.alert_audio_mixer.input_device, device,
self.alert_audio_mixer.ec_tail_length)
 except SIPCoreError, e:
 send_notice('Failed to set alert device to %s: %s' % (device, str(e)))
 else:
 if device == 'system_default':
 send_notice('Alert device changed to %s (system default device)' %
self.alert_audio_mixer.real_output_device)
 else:
 send_notice('Alert device changed to %s' % device)

 def _CH_devices(self):
 engine = Engine()
 send_notice('Available audio input devices: %s' % ', '.join(['None', 'system_default'] +
sorted(engine.input_devices)), bold=False)
 send_notice('Available audio output devices: %s' % ', '.join(['None', 'system_default'] +
sorted(engine.output_devices)), bold=False)
 if self.voice_audio_mixer.input_device == 'system_default':
 send_notice('Using audio input device: %s (system default device)' %
self.voice_audio_mixer.real_input_device, bold=False)
 else:
 send_notice('Using audio input device: %s' % self.voice_audio_mixer.input_device,
bold=False)
 if self.voice_audio_mixer.output_device == 'system_default':
 send_notice('Using audio output device: %s (system default device)' %
self.voice_audio_mixer.real_output_device, bold=False)

SIP	 SIMPLE	 CLIENT	 SDK 363

 363

 else:
 send_notice('Using audio output device: %s' % self.voice_audio_mixer.output_device,
bold=False)
 if self.alert_audio_mixer.output_device == 'system_default':
 send_notice('Using audio alert device: %s (system default device)' %
self.alert_audio_mixer.real_output_device, bold=False)
 else:
 send_notice('Using audio alert device: %s' % self.alert_audio_mixer.output_device,
bold=False)

 def _CH_echo(self, adjust=None):
 if adjust is None:
 send_notice('Echo cancellation tail length is %d ms' %
self.voice_audio_mixer.ec_tail_length)
 return
 adjust_match = re.match(r'(?P<sign>\+|\-)?(?P<value>[0-9]+)', adjust)
 if adjust_match is None:
 raise TypeError()
 sign, value = adjust_match.groups()
 value = int(value)
 if sign is None:
 new_tail_length = value
 elif sign == '+':
 new_tail_length = self.voice_audio_mixer.ec_tail_length + value
 elif sign == '-':
 new_tail_length = self.voice_audio_mixer.ec_tail_length - value
 if new_tail_length < 0:
 new_tail_length = 0
 if new_tail_length > 500:
 new_tail_length = 500
 if new_tail_length != self.voice_audio_mixer.ec_tail_length:
 self.voice_audio_mixer.set_sound_devices(self.voice_audio_mixer.input_device,
self.voice_audio_mixer.output_device, new_tail_length)
 send_notice('Set the echo cancellation tail length to %d ms' %
self.voice_audio_mixer.ec_tail_length)

 def _CH_help(self):
 self._print_help()

 def _CH_quit(self):
 self.stop()

 def _CH_eof(self):
 ui = UI()
 if self.active_session is not None:
 if self.active_session in self.sessions_with_proposals:
 ui.status = 'Cancelling proposal...'
 self.active_session.cancel_proposal()
 else:
 ui.status = 'Ending SIP session...'
 self.active_session.end()
 elif self.outgoing_session is not None:
 ui.status = 'Cancelling SIP session...'
 self.outgoing_session.end()
 else:
 self.stop()

 def _CH_hangup(self):
 if self.active_session is not None:
 send_notice('Ending SIP session...')
 self.active_session.end()
 elif self.outgoing_session is not None:
 send_notice('Cancelling SIP session...')
 self.outgoing_session.end()

 @run_in_green_thread
 def _CH_dtmf(self, tones):
 if self.active_session is not None:
 try:
 audio_stream = [stream for stream in self.active_session.streams if isinstance(stream,
AudioStream)][0]
 except IndexError:
 pass
 else:
 notification_center = NotificationCenter()
 for digit in tones:
 audio_stream.send_dtmf(digit)
 filename = 'sounds/dtmf_%s_tone.wav' % {'*': 'star', '#': 'pound'}.get(digit,
digit)
 wave_player = WavePlayer(self.voice_audio_mixer,
ResourcePath(filename).normalized)
 notification_center.add_observer(self, sender=wave_player)

 364

 if self.active_session.account.rtp.inband_dtmf:
 audio_stream.bridge.add(wave_player)
 else:
 self.voice_audio_bridge.add(wave_player)
 wave_player.start()
 api.sleep(0.3)

 def _CH_record(self, state='toggle'):
 if self.active_session is None:
 return
 try:
 audio_stream = [stream for stream in self.active_session.streams if isinstance(stream,
AudioStream)][0]
 except IndexError:
 pass
 else:
 if state == 'toggle':
 new_state = not audio_stream.recording_active
 elif state == 'on':
 new_state = True
 elif state == 'off':
 new_state = False
 else:
 send_notice('Illegal argument to /record. Type /help for a list of available
commands.')
 return
 if new_state:
 audio_stream.start_recording()
 else:
 audio_stream.stop_recording()

 def _CH_hold(self, state='toggle'):
 if self.active_session is not None:
 if state == 'toggle':
 new_state = not self.active_session.on_hold
 elif state == 'on':
 new_state = True
 elif state == 'off':
 new_state = False
 else:
 send_notice('Illegal argument to /hold. Type /help for a list of available commands.')
 return
 if new_state:
 self.active_session.hold()
 else:
 self.active_session.unhold()

 def _CH_add(self, stream_name):
 if self.active_session is None:
 send_notice('There is no active session')
 return
 if stream_name in (stream.type for stream in self.active_session.streams):
 send_notice('The active session already has a %s stream' % stream_name)
 return
 proposal_handler = OutgoingProposalHandler(self.active_session, **{stream_name: True})
 try:
 proposal_handler.start()
 except IllegalStateError:
 send_notice('Cannot add a stream while another transaction is in progress')

 def _CH_remove(self, stream_name):
 if self.active_session is None:
 send_notice('There is no active session')
 return
 try:
 stream = (stream for stream in self.active_session.streams if
stream.type==stream_name).next()
 except StopIteration:
 send_notice('The current active session does not have any %s streams' % stream_name)
 else:
 try:
 self.active_session.remove_stream(stream)
 except IllegalStateError:
 send_notice('Cannot remove a stream while another transaction is in progress')

 # private methods
 #

 def _print_help(self):
 lines = []
 lines.append('General commands:')
 lines.append(' /call {user[@domain]}: call the specified user using audio and chat')

SIP	 SIMPLE	 CLIENT	 SDK 365

 365

 lines.append(' /audio {user[@domain]} [+chat]: call the specified user using audio and
possibly chat')
 lines.append(' /chat {user[@domain]} [+audio]: call the specified user using chat and
possibly audio')
 lines.append(' /send {user[@domain]} {file}: initiate a file transfer with the specified
user')
 lines.append(' /next: select the next connected session')
 lines.append(' /prev: select the previous connected session')
 lines.append(' /sessions: show the list of connected sessions')
 if isinstance(self.account, BonjourAccount):
 lines.append(' /neighbours: show the list of bonjour neighbours')
 lines.append(' /trace [[+|-]sip] [[+|-]msrp] [[+|-]pjsip] [[+|-]notifications]: toggle/set
tracing on the console (ctrl-x s | ctrl-x m | ctrl-x j | ctrl-x n)')
 lines.append(' /rtp [on|off]: toggle/set printing RTP statistics on the console (ctrl-x p)')
 lines.append(' /mute [on|off]: mute the microphone (ctrl-x u)')
 lines.append(' /input [device]: change audio input device (ctrl-x i)')
 lines.append(' /output [device]: change audio output device (ctrl-x o)')
 lines.append(' /alert [device]: change audio alert device (ctrl-x a)')
 lines.append(' /echo [+|-][value]: adjust echo cancellation (ctrl-x < | ctrl-x >)')
 lines.append(' /quit: quit the program (ctrl-x q)')
 lines.append(' /help: display this help message (ctrl-x ?)')
 lines.append('In call commands:')
 lines.append(' /hangup: hang-up the active session (ctrl-x h)')
 lines.append(' /dtmf {0-9|*|#|A-D}...: send DTMF tones (ctrl-x 0-9|*|#|A-D)')
 lines.append(' /record [on|off]: toggle/set audio recording (ctrl-x r)')
 lines.append(' /hold [on|off]: hold/unhold (ctrl-x SPACE)')
 lines.append(' /add {chat|audio}: add a stream to the current session')
 lines.append(' /remove {chat|audio}: remove a stream from the current session')
 send_notice(lines, bold=False)

 def _update_prompt(self):
 ui = UI()
 session = self.active_session
 if session is None:
 ui.prompt = Prompt(self.account.id, foreground='default')
 else:
 identity = '%s@%s' % (session.remote_identity.uri.user, session.remote_identity.uri.host)
 if session.remote_identity.display_name:
 identity = '%s (%s)' % (session.remote_identity.display_name, identity)
 streams = '/'.join(stream.type.capitalize() for stream in session.streams)
 if not streams:
 streams = 'Session without media'
 ui.prompt = Prompt('%s to %s' % (streams, identity), foreground='darkred')

def parse_handle_call_option(option, opt_str, value, parser, name):
 try:
 value = parser.rargs[0]
 except IndexError:
 value = 0
 else:
 if value == '' or value[0] == '-':
 value = 0
 else:
 try:
 value = int(value)
 except ValueError:
 value = 0
 else:
 del parser.rargs[0]
 setattr(parser.values, name, value)

if __name__ == '__main__':
 description = '%prog is a command-line client for handling multiple audio, chat and file-transfer
sessions'
 usage = '%prog [options] [user@domain]'
 parser = OptionParser(usage=usage, description=description)
 parser.print_usage = parser.print_help
 parser.add_option('-a', '--account', type='string', dest='account', help='The account name to use
for any outgoing traffic. If not supplied, the default account will be used.', metavar='NAME')
 parser.add_option('-c', '--config-file', type='string', dest='config_file', help='The path to a
configuration file to use. This overrides the default location of the configuration file.',
metavar='FILE')
 parser.add_option('-s', '--trace-sip', action='store_true', dest='trace_sip', default=False,
help='Dump the raw contents of incoming and outgoing SIP messages.')
 parser.add_option('-m', '--trace-msrp', action='store_true', dest='trace_msrp', default=False,
help='Dump msrp logging information and the raw contents of incoming and outgoing MSRP messages.')
 parser.add_option('-j', '--trace-pjsip', action='store_true', dest='trace_pjsip', default=False,
help='Print PJSIP logging output.')
 parser.add_option('-n', '--trace-notifications', action='store_true', dest='trace_notifications',
default=False, help='Print all notifications (disabled by default).')

 366

 parser.add_option('-S', '--disable-sound', action='store_true', dest='disable_sound',
default=False, help='Disables initializing the sound card.')
 parser.set_default('auto_answer_interval', None)
 parser.add_option('--auto-answer', action='callback', callback=parse_handle_call_option,
callback_args=('auto_answer_interval',), help='Interval after which to answer an incoming session
(disabled by default). If the option is specified but the interval is not, it defaults to 0 (accept
the session as soon as it starts ringing).', metavar='[INTERVAL]')
 parser.set_default('auto_hangup_interval', None)
 parser.add_option('--auto-hangup', action='callback', callback=parse_handle_call_option,
callback_args=('auto_hangup_interval',), help='Interval after which to hang up an established session
(disabled by default). If the option is specified but the interval is not, it defaults to 0 (hangup
the session as soon as it connects).', metavar='[INTERVAL]')
 options, args = parser.parse_args()

 target = args[0] if args else None

 application = SIPSessionApplication()
 application.start(target, options)

 signal.signal(signal.SIGINT, signal.SIG_DFL)
 application.stopped_event.wait()
 sleep(0.1)

